Background: The Abraham general solvation model can be used in a broad set of scenarios involving partitioning and solubility, yet is limited to a set of solvents with measured Abraham coefficients. Here we extend the range of applicability of Abraham's model by creating open models that can be used to predict the solvent coefficients for all organic solvents.
Results: We created open random forest models for the solvent coefficients e, s, a, b, and v that had out-of-bag R(2) values of 0.31, 0.77, 0.92, 0.47, and 0.63 respectively. The models were used to suggest sustainable solvent replacements for commonly used solvents. For example, our models predict that propylene glycol may be used as a general sustainable solvent replacement for methanol.
Conclusion: The solvent coefficient models extend the range of applicability of the Abraham general solvation equations to all organic solvents. The models were developed under Open Notebook Science conditions which makes them open, reproducible, and as useful as possible. Graphical AbstractChemical space for solvents with known Abraham coefficients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369285 | PMC |
http://dx.doi.org/10.1186/s13065-015-0085-4 | DOI Listing |
Int J Mol Sci
January 2025
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India.
Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies.
View Article and Find Full Text PDFBiomolecules
January 2025
School of Computer Science, University College Dublin (UCD), D04 V1W8 Dublin, Ireland.
Predicting the relative solvent accessibility (RSA) of a protein is critical to understanding its 3D structure and biological function. RSA prediction, especially when homology transfer cannot provide information about a protein's structure, is a significant step toward addressing the protein structure prediction challenge. Today, deep learning is arguably the most powerful method for predicting RSA and other structural features of proteins.
View Article and Find Full Text PDFToxins (Basel)
December 2024
NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Shanghai 201203, China.
Puberulic acid (PA) is a mycotoxin produced by a species of . It has received widespread attention as a significant contributor to the reported fatalities associated with red yeast rice dietary supplements. However, the detection of PA, especially at low concentration levels, poses a considerable challenge, with no detection methods reported thus far.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Postgraduate Program in Process and Technologies Engineering (PGEPROTEC), University of Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil.
The starting point for the preparation of polymeric membranes by phase inversion is having a thermodynamically stable solution. Ternary diagrams for the polymer, solvent, and non-solvent can predict this stability by identifying the phase separation and describing the thermodynamic behavior of the membrane formation process. Given the lack of data for the ternary system water (HO)/hydrochloric acid (HCℓ)/polyamide 66 (PA66), this work employed the Flory-Huggins theory for the construction of the ternary diagrams (HO/HCℓ/PA66 and HO/formic acid (FA)/PA66) by comparing the experimental data with theoretical predictions.
View Article and Find Full Text PDFGels
December 2024
Institute of Natural Sciences and Technosphere Safety, Sakhalin State University, 693000 Yuzhno-Sakhalinsk, Russia.
A new composite material with enhanced sorption-selective properties for uranium recovery from liquid media has been obtained. Sorbents were synthesized through a polycondensation reaction of a mixture of 4-amino-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (hereinafter referred to as amidoxime) and SiO in an environment of organic solvents (acetic acid, dioxane) and highly porous SiO. To establish optimal conditions for forming the polymer sorption-active part and the synthesis as a whole, a series of composite adsorbents were synthesized with varying amidoxime/matrix ratios (35/65, 50/50, 65/35).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!