Computer processable classification of craniofacial clefts.

Front Physiol

Department of Orthodontics and Dentofacial Orthopedics, Career Post Graduate Institute of Dental Sciences Lucknow, India.

Published: March 2015

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351591PMC
http://dx.doi.org/10.3389/fphys.2015.00067DOI Listing

Publication Analysis

Top Keywords

computer processable
4
processable classification
4
classification craniofacial
4
craniofacial clefts
4
computer
1
classification
1
craniofacial
1
clefts
1

Similar Publications

Activated intramolecular singlet fission is known to occur in the conjugated polymer polythienylene-vinylene (P3TV). Instead, efficient intersystem crossing has been observed in a short 3-alkyl(thienylene-vinylene) dimer. Here, we investigate a series of oligomers covering the conjugation length gap between the dimer and polymer.

View Article and Find Full Text PDF

Conjugated polymers (CPs) with polar side chains can conduct electronic and ionic charges simultaneously, making them promising for bioelectronics, electrocatalysis and energy storage. Recent work showed that adding alkyl spacers between CP backbones and polar side chains improved electronic charge carrier mobility, reduced swelling and enhanced stability, without compromising ion transport. However, how alkyl spacers impact polymer backbone conformation and, subsequently, electronic properties remain unclear.

View Article and Find Full Text PDF

Trivalent Ionic Molecular Bridges as Efficient Charge-Trapping Method for All-Solid-State Organic Synaptic Transistors toward Neuromorphic Signal Processing Applications.

Small Methods

December 2024

Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.

Achieving high retention of memory state is crucial in artificial synapse devices for neuromorphic computing systems. Of various memorizing methods, a charge-trapping method provides fast response times when it comes to the smallest size of electrons. Here, for the first time, it is demonstrated that trivalent molecular bridges with three ionic bond sites in the polymeric films can efficiently trap electrons in the organic synaptic transistors (OSTRs).

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) are microbially produced aliphatic polyesters investigated for tissue engineering thanks to their biocompatibility, processability, and suitable mechanical properties. Taking advantage of these properties, the present study investigates the development by 3D printing of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds loaded with β-tricalcium phosphate (β-TCP) for bone tissue regeneration. PHBV blending with poly(lactide-co-glycolide) (PLGA) (30 wt%) was exploited to enhance material processability via an optimized computer-aided wet-spinning approach.

View Article and Find Full Text PDF

Selectively Self-Aligned Sol-Gel Copper Oxide for Large-Area Multi-Valued Logic Devices.

Small

December 2024

Department of Intelligence Semiconductor and Engineering, Ajou University, Suwon, Republic of Korea.

Rapid expansion of digital information density has led to a growing demand for multi-valued logic (MVL) systems, which aim to minimize energy and time consumption for computations. Heterojunction transistors represent a class of device architectures for MVL circuits; however, partially layered structures can be realized only for vacuum-deposited organic and transferred 2D materials due to the constraints of patterning processes. In this study, a novel CuO/IGZO heterojunction-based ternary inverter is presented via a sol-gel technique and direct patterning process using a self-assembled monolayer (SAM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!