The development of techniques for nanoscale structure-activity correlations is of major importance for the fundamental understanding and rational design of (photo)electrocatalysts. However, the low conversion efficiency of characteristic materials generates tiny photoelectrochemical currents at the submicrometer to nanoscale, in the fA range, which are challenging to detect and measure accurately. Here, we report the coupling of scanning electrochemical cell microscopy (SECCM) with photoillumination, to create a submicrometer spatial resolution cell that opens up high resolution structure-(photo)activity measurements. We demonstrate the capabilities of the technique as a tool for: (i) high spatial resolution (photo)activity mapping using an ionic liquid electrolyte at a thin film of TiO2 aggregates, commonly used as a photoanode in dye sensitized solar cells (DSSCs) and (ii) in situ (photo)activity measurements of an electropolymerized conjugated polymer on a transparent Au substrate in a controlled atmospheric environment. Quantitative data, including localized (photo)electrochemical transients and external quantum efficiency (EQE), are extracted, and prospects for further technique development and enhancement are outlined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b00288 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!