The magnetic field dependence of Chemically Induced Dynamic Nuclear Polarization (CIDNP) was studied for the amino acids N-acetyl histidine, N-acetyl tryptophan and N-acetyl tyrosine. It is demonstrated that at low field CIDNP is strongly affected by polarization redistribution in the diamagnetic molecules. Such a polarization transfer is of coherent nature and is due to spin coherences formed together with non-equilibrium population of the spin states. These coherences clearly manifest themselves in an oscillatory time dependence of polarization. Polarization transfer effects are most pronounced at nuclear spin Level Anti-Crossings (LACs), which also result in sharp features in the CIDNP field dependence. Thus, polarization transfer is an important factor, which has to be taken into account in order to interpret low-field CIDNP data on both qualitative and quantitative level. Possible applications of polarization transfer phenomena are also discussed in the paper. In particular, the role of LACs in spin order transfer is highlighted: LACs provide a new tool for precise manipulation of spin hyperpolarization and NMR enhancement of selected target spins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2015.02.008DOI Listing

Publication Analysis

Top Keywords

polarization transfer
20
polarization
8
field dependence
8
dependence polarization
8
cidnp
5
transfer
5
spin
5
transfer reaction
4
reaction products
4
products interpreting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!