Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.

DNA Repair (Amst)

Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. Electronic address:

Published: June 2015

AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451939PMC
http://dx.doi.org/10.1016/j.dnarep.2015.02.021DOI Listing

Publication Analysis

Top Keywords

alkb proteins
24
ɛc ssdna
16
bacterial human
8
proteins
8
substrate specificity
8
three ɛ-adducts
8
nucleotide recognition
8
recognition lid
8
three proteins
8
ɛa ɛc
8

Similar Publications

RNA mA involves in regulation of oxidative stress and apoptosis may via NF-kB pathway in cadmium-induced lung cells.

Cell Death Discov

January 2025

Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, PR China.

Cadmium has been identified as an environmental pollutant and a carcinogen. N-methyladenosine (mA) plays a crucial role in the development of lung tumors, but the mechanisms remain incompletely clarified. In present study, our data demonstrated that prolonged treatment of 1 μmol/L CdSO for 40 passages in bronchial epithelial cells (Beas-2B cells) resulted in the development of a malignant phenotype, which manifested as boosted proliferation, migration and invasion capacity as well as apoptosis reduction.

View Article and Find Full Text PDF

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear.

View Article and Find Full Text PDF

Epitranscriptomic modifications on RNA play critical roles in stability, processing, and function, partly by influencing interactions with RNA-binding proteins and receptors. The role of post-transcriptional RNA modifications on cell-free non-coding small RNA (sRNA) remains poorly understood in disease contexts. High-density lipoproteins (HDL), which transport sRNAs, can lose their beneficial properties in atherosclerosis cardiovascular disease (ASCVD).

View Article and Find Full Text PDF

ALKBH5 facilitates tumor progression via an m6A-YTHDC1-dependent mechanism in glioma.

Cancer Lett

January 2025

Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China. Electronic address:

N-methyladenosine (m6A) methylation, is a well-known epigenetic modification involved in various biological processes, including tumorigenesis. However, the role of AlkB homolog 5 (ALKBH5), a critical component of m6A modification, remains unclear in glioma. This study investigates the function of ALKBH5 in glioma progression and its potential as a therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!