Waterlogging has been suggested to affect carbon (C) turnover in wetlands, but how it affects C allocation and stocks remains unclear in alpine wetlands. Using in situ (13)CO2 pulse labelling, we investigated C allocation in both waterlogged and non-waterlogged sites in the Zoigê wetlands on the Tibetan Plateau in August 2011. More than 50% of total (13)C fixed by photosynthesis was lost via shoot respiration. Shoots recovered about 19% of total (13)C fixed by photosynthesis at both sites. Only about 26% of total fixed (13)C was translocated into the belowground pools. Soil organic C pool accounted for 19% and roots recovered about 5-7% of total fixed (13)C at both sites. Waterlogging significantly reduced soil respiration and very little (13)C was lost via soil respiration in the alpine wetlands compared to that in grasslands. We conclude that waterlogging did not significantly alter C allocations among the C pools except the (13)CO2 efflux derived from soil respiration and that shoots made similar contributions to C sequestration as the belowground parts in the Zoigê alpine wetlands. Therefore, changes in waterlogging due to climate change will not affect C assimilate partitioning but soil C efflux.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369740PMC
http://dx.doi.org/10.1038/srep09411DOI Listing

Publication Analysis

Top Keywords

alpine wetlands
16
soil respiration
12
assimilate partitioning
8
zoigê alpine
8
13co2 pulse
8
total 13c
8
13c fixed
8
fixed photosynthesis
8
respiration shoots
8
total fixed
8

Similar Publications

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

Soil nitrogen (N) transformation is an essential portion of the N cycle in wetland ecosystems, governing the retention status of soil N by controlling the effective soil N content. N deposition produced by human activities changes the physical characteristics of soil, affecting N fractions and enzyme activities. To characterize these influences, three different N addition levels (N5, 5 g/m; N10, 10 g/m; N15, 15 g/m) were established using a wet meadow on the Qinghai-Tibet Plateau (QTP) as a control treatment (0 g/m).

View Article and Find Full Text PDF

The soil nitrogen (N) cycle in the alpine wetland of the Qinghai-Tibet Plateau (QTP) has been strongly affected by vegetation degradation caused by climate change and human activities, subsequently impacting ecosystem functions. However, previous studies have rarely addressed how varying degrees of vegetation degradation affect soil net nitrogen mineralization rates and their temporal dynamics in these sensitive ecosystems. Therefore, we conducted a three-year field-based soil core in situ incubation mineralization experiment on the northeastern margin of the Tibetan Plateau from 2019 to 2021 to assess the variations in soil net ammonification, nitrification, and mineralization rates during the growing season (June to October).

View Article and Find Full Text PDF

New York State Climate Impacts Assessment Chapter 05: Ecosystems.

Ann N Y Acad Sci

December 2024

New York State Energy Research and Development Authority, Albany, New York, USA.

The people of New York have long benefited from the state's diversity of ecosystems, which range from coastal shorelines and wetlands to extensive forests and mountaintop alpine habitat, and from lakes and rivers to greenspaces in heavily populated urban areas. These ecosystems provide key services such as food, water, forest products, flood prevention, carbon storage, climate moderation, recreational opportunities, and other cultural services. This chapter examines how changes in climatic conditions across the state are affecting different types of ecosystems and the services they provide, and considers likely future impacts of projected climate change.

View Article and Find Full Text PDF

Diversity loss and light limitation threaten the sustainability of ecosystem productivity gains under nitrogen enrichment.

Sci Total Environ

December 2024

Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Article Synopsis
  • Plant photosynthesis helps control CO₂ levels but is often limited by nitrogen (N) availability; N deposition can boost productivity temporarily but may have negative long-term effects like biodiversity loss.
  • A six-year study in an alpine meadow found that while N addition initially increased gross ecosystem productivity (GEP) over the first three years, this effect faded by years four to six.
  • The study highlighted that the drop in productivity was tied to decreased efficiency in carbon assimilation per biomass (specific GEP), largely due to biodiversity loss and competition for light, suggesting that prolonged N enrichment may not yield lasting benefits.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!