Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several species of crabs are resistant to paralytic shellfish toxins (PSTs) and/or pufferfish toxin, tetrodotoxin, regardless of toxification by the toxins. The shore crab Thalamita crenata, which inhabits Leizhou Peninsula, China, is tolerant to PST toxicity, and the hemolymph has neutralizing effects against the lethal activity of PST. In the present study, we investigated the PST neutralizing factors in the hemolymph from T. crenata and successfully separated PST-binding proteins by PST-ligand affinity chromatography. The neutralization factors, obtained in the fraction with a molecular weight over 10 kDa by ultrafiltration, were susceptible to proteases such as alcalase, animal complex proteases, pancreatin, and papain. The PST-binding protein had high dose-dependent neutralization effects on PST toxicity. The PST-binding activity of the protein was stable at 25 °C and then decreased with an increase in temperature; heating at 65 °C for 60 min eliminated the initial activity by two-thirds. The PST-binding activity was strongly inhibited in the presence of Mg(2+) and Ca(2+), but not Na(+) and K(+). The PST-binding capability of the protein differed among PST components in descending order of neosaxitoxin, gonyautoxins 1 and 4, saxitoxin, and gonyautoxins 2 and 3, suggesting a structure-activity relationship in PST binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2015.03.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!