A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc2qr2j7cbfq80ru1or2f4odrqn87a83o): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scaling drug indication curation through crowdsourcing. | LitMetric

Motivated by the high cost of human curation of biological databases, there is an increasing interest in using computational approaches to assist human curators and accelerate the manual curation process. Towards the goal of cataloging drug indications from FDA drug labels, we recently developed LabeledIn, a human-curated drug indication resource for 250 clinical drugs. Its development required over 40 h of human effort across 20 weeks, despite using well-defined annotation guidelines. In this study, we aim to investigate the feasibility of scaling drug indication annotation through a crowdsourcing technique where an unknown network of workers can be recruited through the technical environment of Amazon Mechanical Turk (MTurk). To translate the expert-curation task of cataloging indications into human intelligence tasks (HITs) suitable for the average workers on MTurk, we first simplify the complex task such that each HIT only involves a worker making a binary judgment of whether a highlighted disease, in context of a given drug label, is an indication. In addition, this study is novel in the crowdsourcing interface design where the annotation guidelines are encoded into user options. For evaluation, we assess the ability of our proposed method to achieve high-quality annotations in a time-efficient and cost-effective manner. We posted over 3000 HITs drawn from 706 drug labels on MTurk. Within 8 h of posting, we collected 18 775 judgments from 74 workers, and achieved an aggregated accuracy of 96% on 450 control HITs (where gold-standard answers are known), at a cost of $1.75 per drug label. On the basis of these results, we conclude that our crowdsourcing approach not only results in significant cost and time saving, but also leads to accuracy comparable to that of domain experts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369375PMC
http://dx.doi.org/10.1093/database/bav016DOI Listing

Publication Analysis

Top Keywords

drug indication
12
scaling drug
8
drug labels
8
annotation guidelines
8
drug label
8
drug
7
indication
4
indication curation
4
crowdsourcing
4
curation crowdsourcing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!