Six tetranuclear 3d–4f single-molecule magnet (SMM) complexes formed using N-n-butyldiethanolamine and N-methyldiethanolamine in conjunction with ortho- and para-substituted benzoic acid and hexafluoroacetoacetone ligands yield two families, both having a butterfly metallic core. The first consists of four complexes of type {Co2(III)Dy2(III)} and {Co2(III)Co(II)Dy(III)} using N-n-butyldiethanolamine with variation of the carboxylate ligand. The anisotropy barriers are 80 cm–1, (77 and 96 cm–1—two relaxation processes occur), 117 and 88 cm–1, respectively, each following a relaxation mechanism from a single DyIII ion. The second family consists of a {Co2(III)Dy2(III)} and a {Cr2(III)Dy2(III)} complex, from the ligand combination of N-methyldiethanolamine and hexafluoroacetylacetone. Both show SMM behavior, the Co(III) example displaying an anisotropy barrier of 23 cm–1. The Cr(III) complex displays a barrier of 28 cm–1, with longer relaxation times and open hysteresis loops, the latter of which is not seen in the Co(III) case. This is a consequence of strong Dy(III)–Cr(III) magnetic interactions, with the relaxation arising from the electronic structure of the whole complex and not from a single DyIII ion. The results suggest that the presence of strong exchange interactions lead to significantly longer relaxation times than in isostructural complexes where the exchange is weak. The study also suggests that electron-withdrawing groups on both bridging (carboxylate) and terminal (β-diketonate) ligands enhance the anisotropy barrier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.5b00219 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, University of Patras, Patras 265 04, Greece.
A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh, 462066, India.
Dalton Trans
January 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N6N5, Canada.
Lanthanide-based Single-Molecule Magnets (SMMs) with optical and magnetic properties provide a means to understand intrinsic energy levels of 4f ions and their influence on optical and magnetic behaviour. Fundamental understanding of their luminescent and slow relaxation of the magnetization behaviour is critical for targeting and designing SMMs with multiple functionalities. Herein, we seek to investigate the role of Dy coordination environment and fine electronic structure on the slow magnetic relaxation and luminescence thermometry.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
Air-stable single-molecule magnets (SMMs) can be obtained by confining Dy ion in a coordination environment; however, most of the current efforts were focused on modifying the rigidity of the macrocycle ligand. Herein, we attempt to assemble air-stable SMMs based on macrocycles with a replaceable coordination site. By using an in situ 1 + 1 Schiff-base reaction of dialdehyde with diamine, three air-stable SMMs have been obtained in which one of the equatorial coordination sites can be varied from -NH- (for ), -O- (for ), and -NMe- (for ).
View Article and Find Full Text PDFChem Asian J
January 2025
Department of Chemistry, Indian Institute of Technology, Bombay, Powai, 400076, Mumbai, India.
Isostructural Dy(III) and Er(III) complexes [L Ln(HO)][I] ⋅ L ⋅ (CHCl) (Ln=Dy (1), Er (3)) and [L Ln(HO)][I] ⋅ L ⋅ (CHCl) (Ln=Dy (2), Er (4)), with distorted pentagonal bipyramidal geometry (D) around the central metal were synthesized by utilizing two bulky phosphonamide ligands, adamantyl phosphonamide, (Ad)P(O)(NHPr) (L) and carbazolyl phosphoramide (Cz)P(O)(NHPr) (L). The resultant complexes were investigated for their magnetic properties in order to elucidate the impact of modification of the coordinating P-O bond environment either by increasing steric bulk and/or introduction of a third P-N bond at the central phosphorus atom. Magnetic studies revealed substantial energy barriers (U) of 640 K and 491 K for Dy compounds 1 and 2, respectively, rendering them as some of the best-performing air-stable SIMs amongst the class of SIMs with D symmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!