Based on the MODIS-NDVI remotely sensed imagery, this paper analyzed the spatial distribution of vegetation net primary production (NPP) calculated by CASA model in Yellow River watersheds from 2001 to 2010. Associated with the temperature and precipitation data in the same period, this article respectively analyzed the change trends of vegetation NPP in six ecosystems with different spatial and temporal scales, and the relationship between NPP and climate factors. The results indicated that in terms of spatial scale, the vegetation NPP gradually reduced from northwest to southeast, the average of annual NPP was 108.53 Tg C, and the spatial distribution of vegetation NPP was highly related with the land cover types. In terms of temporal scale, the vegetation NPP gradually increased from 2001 to 2010, but this change trend had large differences in these regions. On annual level, the vegetation NPP had no significant correlation with climate factors, but precipitation and temperature had considerable impacts on the vegetation NPP on monthly level. The correlations between NPP and climate factors were different in different ecosystems, so did the time lag effect of the climate factors. The air temperature response of the NPP variation was relatively sensitive in forest ecosystem and the precipitation response was significant in grassland and wetland ecosystems. Additionally, the precipitation response of the NPP variation in grassland ecosystem had time lag effect and so did the air temperature response in desert ecosystem.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming, 650100, China.
In response to the impacts of climate change and the intensity of human activities in the alpine meadow region, there is an urgent need to determine the ecological quality and its drivers in alpine meadow areas. In this paper, Shangri-La was adopted as an example, the spatial and temporal evolution patterns of the ecological quality in Shangri-La were determined in both natural and social dimensions, and the contributions of various driving factors were analyzed. The conclusions are as follows: (1) the natural status index of Shangri-La from 2000 to 2020 generally showed a spatial distribution pattern that decreased from the central townships toward the north and south, and the social pressure index was irregularly distributed in high-value areas and continuously distributed in low-value areas.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Land and Resources, Hebei Agricultural University, Baoding 071001, China.
The Taihangshan-Yanshan Region is an important ecological barrier area in Beijing-Tianjin-Hebei, and it is of great importance to investigate the spatial distribution pattern and driving mechanism of net primary productivity (NPP) of vegetation for ecological restoration. The MOD17A3HGF.061 NPP dataset was obtained using the Google earth engine(GEE), and Sen trend, coefficient of variation, partial correlation, complex correlation, and residual analysis were applied to investigate the spatial and temporal patterns of vegetation NPP in the study area and to quantitatively isolate the relative contributions of climate change and human activities.
View Article and Find Full Text PDFPLoS One
December 2024
School of Geographical Science, Hebei Normal University, Shijiazhuang, Hebei, China.
Grassland plays a crucial role in the global cycles of matter, energy, water and, climate regulation. Biomass serves as one of the fundamental indicators for evaluating the ecological status of grassland. This study utilized the Carnegie-Ames-Stanford Approach (CASA) model to estimate Net Primary Productivity (NPP) from meteorological data and the Global Inventory Monitoring and Modeling System (GIMMS) Normalized Difference Vegetation Index (NDVI) remote sensing data for northern China's temperate and alpine grasslands from 1981 to 2015.
View Article and Find Full Text PDFHuan Jing Ke Xue
November 2024
State Key Laboratory of Ecological Water Resources in Northwest Arid Zone, Xi'an University of Technology, Xi'an 710000, China.
The Net Primary Productivity (NPP) of vegetation plays a crucial role in terrestrial ecosystems, and a detailed investigation into the annual average NPP and its driving factors is of significant importance for promoting regional ecological construction and sustainable development. This research utilized MOD17A3 annual average NPP data from 2000 to 2020 and employed methods such as trend analysis, Hurst index, random forest model, partial dependence model, geographic weighted regression, and partial least squares-structural equation model (PLS-SEM) to analyze the annual variation characteristics of NPP and its relationship with driving factors in the upper and middle reaches of the Yellow River. The results showed: ① During the period from 2000 to 2020, the annual average NPP in the upper and middle reaches of the Yellow River generally exhibited a year-on-year increasing trend, with 79.
View Article and Find Full Text PDFHuan Jing Ke Xue
December 2024
Second Surveying and Mapping Institute of Hunan Province, Changsha 410009, China.
The Chang-Zhu-Tan ecological Green Heart area is the largest urban agglomeration Green Heart area in China. To clarify the spatiotemporal changes and driving factors of net primary productivity (NPP) of vegetation in the Chang-Zhu-Tan Green Heart area, an improved Carnegie Ames Stanford Approach (CASA) model was used to estimate the monthly vegetation NPP from 2011 to 2020 based on measured and remote sensing data. With the help of ArcGIS 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!