Systematic evaluation of combined automated NOE assignment and structure calculation with CYANA.

J Biomol NMR

Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.

Published: May 2015

The automated assignment of NOESY cross peaks has become a fundamental technique for NMR protein structure analysis. A widely used algorithm for this purpose is implemented in the program CYANA. It has been used for a large number of structure determinations of proteins in solution but a systematic evaluation of its performance has not yet been reported. In this paper we systematically analyze the reliability of combined automated NOESY assignment and structure calculation with CYANA under a variety of conditions on the basis of the experimental NMR data sets of ten proteins. To evaluate the robustness of the algorithm, the original high-quality experimental data sets were modified in different ways to simulate the effect of data imperfections, i.e. incomplete or erroneous chemical shift assignments, missing NOESY cross peaks, inaccurate peak positions, inaccurate peak intensities, lower dimensionality NOESY spectra, and higher tolerances for the matching of chemical shifts and peak positions. The results show that the algorithm is remarkably robust with regard to imperfections of the NOESY peak lists and the chemical shift tolerances but susceptible to lacking or erroneous resonance assignments, in particular for nuclei that are involved in many NOESY cross peaks.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10858-015-9921-zDOI Listing

Publication Analysis

Top Keywords

noesy cross
12
cross peaks
12
systematic evaluation
8
combined automated
8
assignment structure
8
structure calculation
8
calculation cyana
8
data sets
8
chemical shift
8
inaccurate peak
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!