In this work, we primed Galleria mellonella larvae by haemocoel injection of lipopolysaccharide (LPS) extracted from Photorhabdus luminescens TT01 to determine whether bacterial LPS can induce enhanced immune protection (recently called immune priming). We also analyzed the relationship between changes in the levels of innate immune elements and the degree of enhanced immune protection in the larvae at designated time points after priming. The larvae that received experimental doses (20.0, 10.0 and 5.0μg per larva) of LPS demonstrated increased resistance against lethal challenge with P. luminescens TT01; the degree and period of protection correlated positively with the priming dose. These results indicated that the P. luminescens TT01 LPS could induce typical immune priming in G. mellonella. Moreover, the levels of innate immune parameters (i.e. haemocyte density, phagocytosis, haemocyte encapsulation ability, and antibacterial activity of cell-free haemolymph) and endogenous enzyme activities (i.e. acid phosphatase, ACP; alkaline phosphatase, AKP; superoxide dismutase, SOD and lysozyme, LSZ) were significantly increased following priming of the larvae with LPS, whereas the activities of peroxidase (POD) and catalase (CAT) were significantly decreased. All of the parameters examined changed in a dose- and time-dependent manner. This study demonstrated that G. mellonella larvae could modulate their immune responses based on different doses of LPS used for priming, and that priming phenomenon in G. mellonella larvae elicited by LPS was mediated by the innate immune elements and enzyme activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jip.2015.03.007 | DOI Listing |
Antibiotics (Basel)
September 2023
Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria.
Anti-microbial peptides provide a powerful toolkit for combating multidrug resistance. Combating eukaryotic pathogens is complicated because the intracellular drug targets in the eukaryotic pathogen are frequently homologs of cellular structures of vital importance in the host organism. The entomopathogenic bacteria (EPB), symbionts of entomopathogenic-nematode species, release a series of non-ribosomal templated anti-microbial peptides.
View Article and Find Full Text PDFPLoS Pathog
February 2021
Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Tc toxin is an exotoxin composed of three subunits named TcA, TcB and TcC. Structural analysis revealed that TcA can form homopentamer that mediates the cellular recognition and delivery processes, thus contributing to the host tropism of Tc toxin. N-glycans and heparan sulfates have been shown to act as receptors for several Tc toxins.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
March 2020
Texas A&M AgriLife Research and Extension Center, Lubbock, TX, 79403, USA.
PLoS Biol
July 2019
Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom.
Polyketides are a class of specialised metabolites synthesised by both eukaryotes and prokaryotes. These chemically and structurally diverse molecules are heavily used in the clinic and include frontline antimicrobial and anticancer drugs such as erythromycin and doxorubicin. To replenish the clinicians' diminishing arsenal of bioactive molecules, a promising strategy aims at transferring polyketide biosynthetic pathways from their native producers into the biotechnologically desirable host Escherichia coli.
View Article and Find Full Text PDFInfect Genet Evol
October 2019
School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China. Electronic address:
Background: The immune system of many invertebrates, including insects, has been shown to comprise memory, or specific immune priming. However, knowledge of the molecular mechanisms especially the candidate immune-related genes mediated the specificity of the immune priming are still very scarce and fragmentary. We therefore used two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!