Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects adapt to them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2015.03.011 | DOI Listing |
Insect Biochem Mol Biol
December 2024
Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky 40546, USA. Electronic address:
Sci Rep
December 2024
Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.
The virulence of encapsulated fungal conidia against Aedes aegypti larvae was investigated. Molecular studies confirmed that the fungal isolate used here was Beauveria bassiana. Different conidial concentrations were tested.
View Article and Find Full Text PDFJ Med Entomol
December 2024
Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, 32962, USA.
Competition between mosquito species during the larval phase is a well-established mechanism structuring container mosquito communities, with invasive species often outperforming natives. We assessed the competitive outcome between 2 species that occur on the island of Puerto Rico, the historic invasive Aedes aegypti (L.) and the endemic Aedes mediovittatus (Coquillett) (Diptera: Culicidae).
View Article and Find Full Text PDFTrop Med Health
December 2024
Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
Background: Dengue is a devastating viral disease transmitted by mosquito vectors of Aedes aegypti and Aedes albopictus. Mosquito populations thrive in favourable breeding conditions, making mosquito control vital. Eliminating larval populations is the most effective method compared with other mosquito control methods.
View Article and Find Full Text PDFParasit Vectors
December 2024
School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O.BOX 447, Arusha, Tanzania.
Background: Increased global trade, while beneficial economically, can also increase the spread of vector-borne diseases, particularly those transmitted by Aedes mosquitoes spreading via trade routes. Given the heightened trade-induced activity at ports of entry, it is particularly crucial to assess the risk of mosquito-borne diseases in these settings. This study compared the risks of Aedes-borne disease in and around the eastern Tanzanian seaport of Tanga.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!