Using an F2 population derived from cultivated and wild azuki bean, we previously detected a reciprocal translocation and a seed size QTL near the translocation site. To test the hypothesis that the translocation in the cultivated variety contributed to the larger seed size, we performed further linkage analyses with several cross combinations between cultivated and wild azuki beans. In addition, we visually confirmed the translocation by cytogenetic approach using 25 wild and cultivated accessions. As a result, we found the translocation-type chromosomes in none of the cultivated accessions, but in a number of the wild accessions. Interestingly, all the wild accessions with the translocation were originally collected from East Japan, while all the accessions with normal chromosomes were from West Japan or the Sea of Japan-side region. Such biased geographical distribution could be explained by the glacial refugium hypothesis, and supported narrowing down the domestication origin of cultivated azuki bean.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-015-0720-0DOI Listing

Publication Analysis

Top Keywords

reciprocal translocation
8
east japan
8
cultivated wild
8
wild azuki
8
azuki bean
8
seed size
8
cultivated accessions
8
wild accessions
8
wild
6
cultivated
6

Similar Publications

Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.

View Article and Find Full Text PDF

Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.

View Article and Find Full Text PDF

Background: A thorough analysis of genome evolution is fundamental for biodiversity understanding. The iconic monotremes (platypus and echidna) feature extraordinary biology. However, they also exhibit rearrangements in several chromosomes, especially in the sex chromosome chain.

View Article and Find Full Text PDF

The enterobacterial common antigen (ECA) is conserved in Gram-negative bacteria of the order although its function is debated. ECA biogenesis depends on the Wzx/Wzy-dependent strategy whereby the newly synthesized lipid-linked repeat units, lipid III, are transferred across the inner membrane by the lipid III flippase WzxE. WzxE is part of the Wzx family and required in many glycan assembly systems, but an understanding of its molecular mechanism is hindered due to a lack of structural evidence.

View Article and Find Full Text PDF

Translocation: A Common Tumor Driver of Distinct Human Neoplasms.

Int J Mol Sci

December 2024

School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.

Cancer is among the leading causes of mortality in developed countries due to limited available therapeutic modalities and high rate of morbidity. Although malignancies might show individual genetic landscapes, recurring aberrations in the neoplastic genome have been identified in the wide range of transformed cells. These include translocations of frequently affected loci of the human genetic material like the Ewing sarcoma breakpoint region 1 () of chromosome 22 that results in malignancies with mesodermal origin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!