Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hypothesis: Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia.
Experiments: Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD.
Findings: Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2015.02.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!