Traumatic brain injury (TBI) continues to be a leading cause of morbidity and mortality throughout the world. Research has been undertaken in order to better understand the characteristics of the injury event and measure the risk of injury to develop more effective environmental, technological, and clinical management strategies. This research used methods that have limited applications to predicting human responses. This limits the current understanding of the mechanisms of TBI in humans. As a result, the purpose of this research was to examine the characteristics of impact and dynamic response that leads to a high risk of sustaining a TBI in a human population. Twenty TBI events collected from hospital reports and eyewitness accounts were reconstructed in the laboratory using a combination of computational mechanics models and Hybrid III anthropometric dummy systems. All cases were falls, with an average impact velocity of approximately 4.0m/s onto hard impact surfaces. The results of the methodology were consistent with current TBI research, describing TBI to occur in the range of 335-445g linear accelerations and 23.7-51.2krad/s(2) angular accelerations. More significantly, this research demonstrated that lower responses in the antero-posterior direction can cause TBI, with lateral impact responses requiring larger magnitudes for the same types of brain lesions. This suggests an increased likelihood of sustaining TBI for impacts to the front or back of the head, a result that has implications affecting current understanding of the mechanisms of TBI and associated threshold parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2015.03.017 | DOI Listing |
Crit Care
January 2025
Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.
View Article and Find Full Text PDFClin Exp Emerg Med
January 2025
Department of Emergency Medicine, Jeju National University Hospital, Jeju, Korea.
Objective: Traumatic brain injury (TBI) often occurs alongside injuries to other body regions, worsening patient outcomes. This study aimed to evaluate the impact of concomitant injuries on clinical outcomes in patients with isolated versus non-isolated TBI.
Method: A retrospective cross-sectional analysis was conducted using data from the Emergency Department-based Injury In-depth Surveillance System (EDIIS), encompassing 180,058 TBI patients admitted to 23 tertiary hospitals from January 1, 2020, to December 31, 2022.
Biomater Adv
January 2025
Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China. Electronic address:
Improving the regeneration of the tendon-bone interface (TBI) helps to decrease the risk of rotator cuff retears after repair surgeries. Unfortunately, the lack of inherent healing capacity of the TBI, insufficient mechanical properties, and abnormal and persistent inflammation during repair are the key factors leading to suboptimal healing of the rotator cuff. Therefore, a high-strength rotator cuff repair material capable of regulating the unbalanced immune response and enhancing the regeneration of the TBI is urgently needed.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Entrance 1A, 2600 Glostrup, Copenhagen, Denmark.
Purpose Of Review: To evaluate existing functional magnetic resonance imaging (fMRI) studies on post-traumatic headache (PTH) following traumatic brain injury (TBI).
Recent Findings: We conducted a systematic search of PubMed and Embase databases from inception to February 1, 2024. Eligible fMRI studies were required to include adult participants diagnosed with acute or persistent PTH post-TBI in accordance with any edition of the International Classification of Headache Disorders.
J Neurol
January 2025
Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK.
Background: Vestibular dysfunction causing imbalance affects c. 80% of acute hospitalized traumatic brain injury (TBI) cases. Poor balance recovery is linked to worse return-to-work rates and reduced longevity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!