Purpose: This study examines the effect of the L-type calcium channel blocker verapamil on mechanical strain-induced extracellular matrix genes in optic nerve head lamina cribrosa (LC) cells.
Methods: Changes in LC cell intracellular calcium [Ca(2+)]i following hypotonic cell membrane stretch were measured with the fluorescent probe fura-2/AM. Fluorescence intensity was measured, after labelling, by calcium (Ca2+) imaging confocal microscopy. Confluent human LC cell cultures were serum starved for 24 h prior to exposure to cyclical mechanical strain (1 Hz, 15%) for 24 h in the presence or absence of verapamil (10 mm). Transforming growth factor-β 1 (TGF-β1), collagen 6A3 (COL6A3) and chondroitin sulfate proteoglycan 2 (CSPG2) mRNA expression levels were assessed by quantitative RT-PCR.
Results: Hypotonic cell membrane stretch of LC cells from normal donors significantly increased [Ca2+]i (p<0.05). Exposure to cyclical mechanical strain (15% strain) produced a statistically significant increase in the three matrix genes that were examined (TGF-β1, COL6A3 and CSPG2). This response in both cyclical and mechanical stretch was significantly reduced by pretreating LC cells with the L-type calcium channel blocker verapamil (p<0.05).
Conclusions: This study provides evidence of a novel mechanotransduction pathway linking mechanical strain, cation channel function and the induction of LC cell matrix gene transcription. This highlights the potential involvement of calcium influx in the activation of matrix remodelling responses in the optic nerve head and supports the rationale that calcium channel blockers may attenuate disease progression in glaucoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/bjophthalmol-2014-306093 | DOI Listing |
Sci Rep
December 2024
Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China.
Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
Signaling interplay between the histamine 1 receptor (H1R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) in mediating histaminergic itch has been well-established in mammalian models, but whether this is conserved in humans remains to be confirmed due to the difficulties in obtaining human sensory neurons (SNs) for experimentation. Additionally, previously reported species-specific differences in TRPV1 function indicate that use of human SNs is vital for drug candidate screening to have a higher chance of identifying clinically effective TRPV1 antagonists. In this study, we built a histamine-dependent itch model using peripheral SNs derived from human induced pluripotent stem cells (hiPSC-SNs), which provides an accessible source of human SNs for pre-clinical drug screening.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, AV, Italy.
Intracellular Ca homeostasis dysregulation, through the modulation of calcium permeable ion channels and transporters, is gaining attention in cancer research as an apoptosis evasion mechanism. Recently, we highlighted a prognostic role for several calcium permeable channels. Among them, here, we focused on the plasma membrane bidirectional Na/Ca exchanger SLC8A1.
View Article and Find Full Text PDFBehav Brain Funct
December 2024
Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
The large-conductance calcium- and voltage-activated potassium (BK) channels, encoded by the KCNMA1 gene, play important roles in neuronal function. Mutations in KCNMA1 have been found in patients with various neurodevelopmental features, including intellectual disability, autism spectrum disorder (ASD), or attention deficit hyperactivity disorder (ADHD). Previous studies of KCNMA1 knockout mice have suggested altered activity patterns and behavioral flexibility, but it remained unclear whether these changes primarily affect immediate behavioral adaptation or longer-term learning processes.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA.
Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!