Most studies on rhizosphere chemicals are carried out in substrate-free set-ups or in artificial substrates using sampling methods that require an air flow and may thus cause disturbance to the rhizosphere. Our study aimed to develop a simplified and inexpensive system that allows analysis of rhizosphere chemicals at experimentally less disturbed conditions. We designed a mesocosm in which volatile rhizosphere chemicals were sampled passively (by diffusion) without air- and water flow on polydimethylsiloxane-(PDMS) tubes. Dandelion (Taraxacum sect. ruderalia) was used as model plant; roots were left undamaged. Fifteen volatiles were retrieved from the sorptive material by thermal desorption for analysis by gas chromatography/mass spectrometry (GC/MS). Furthermore, three sugars were collected from the rhizosphere substrate by aqueous extraction and derivatized prior to GC/MS analysis. In order to study how the quantity of detected rhizosphere compounds depends on the type of soil or substrate, we determined the matrix-dependent recovery of synthetic rhizosphere chemicals. Furthermore, we compared sorption of volatiles on PDMS tubes with and without direct contact to the substrate. The results show that the newly designed mesocosm is suitable for low-invasive extraction of volatile and non-volatile compounds from rhizospheres. We further highlight how strongly the type of substrate and contact of PDMS tubes to the substrate affect the detectability of compounds from rhizospheres.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408369PMC
http://dx.doi.org/10.1007/s10886-015-0559-9DOI Listing

Publication Analysis

Top Keywords

rhizosphere chemicals
16
volatile non-volatile
8
non-volatile compounds
8
plant roots
8
designed mesocosm
8
pdms tubes
8
compounds rhizospheres
8
rhizosphere
7
substrate
5
novel set-up
4

Similar Publications

Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise.

View Article and Find Full Text PDF

Declining soil health and productivity are key challenges faced by sugarcane small-scale growers in South Africa. Incorporating Vicia sativa and Vicia villosa as cover crops can improve soil health by enhancing nutrient-cycling enzyme activities and nitrogen (N) contributions while promoting the presence of beneficial bacteria in the rhizosphere. A greenhouse experiment was conducted to evaluate the chemical and biological inputs of V.

View Article and Find Full Text PDF

The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.

View Article and Find Full Text PDF

The intensive use of chemical fertilizers for vegetable cultivation to achieve higher productivity causes soil degradation, resulting in an alarming decline (25-50%) in nutritional quality and a reduction in a wide variety of nutritionally essential minerals and nutraceutical compounds in high-yielding vegetable crops over the last few decades. To restore the physio-chemical and biological qualities of soil as well as the nutritional and nutraceutical qualities of fresh produce, there is a growing desire to investigate the remedial impacts of organic sources of nutrition. This study specifically focused on the impact of six different ratios of chemical fertilizers and organic sources with microbial inoculation on vegetable productivity, nutrition quality, and soil health parameters.

View Article and Find Full Text PDF

Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions.

Front Plant Sci

January 2025

Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China.

Introduction: Salt stress significantly affects plant growth, and Na has gained attention for its potential to enhance plant adaptability to saline conditions. However, the interactions between Na, plants, and rhizosphere bacterial communities remain unclear, hindering a deeper understanding of how Na contributes to plant resilience under salt stress.

Methods: This study aimed to investigate the mechanisms through which Na promotes alfalfa's adaptation to salt stress by modifying rhizosphere bacterial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!