Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling.

Phytochemistry

Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. Electronic address:

Published: July 2015

Although sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves. Accompanying the loss of the Δ4 unsaturated LCB sphingadiene (d18:2) in the Δ4 desaturase mutant was a 50% reduction in GlcCer concentrations. In addition, pollen glycosylinositolphosphoceramides (GIPCs) were found to have a complex array of N-acetyl-glycosylated GIPCs, including species with up to three pentose units that were absent from leaf GIPCs. Underlying the distinct sphingolipid composition of pollen, genes for key biosynthetic enzymes for GlcCer and d18:2 synthesis and metabolism were more highly expressed in pollen than in leaves or seedlings, including genes for GlcCer synthase (GCS), sphingoid base C-4 hydroxylase 2 (SBH2), LCB Δ8 desaturases (SLD1 and SLD2), and LOH2 ceramide synthase (LOH2). Overall, these findings indicate strikingly divergent sphingolipid metabolism between pollen and leaves in Arabidopsis, the significance of which remains to be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2015.02.019DOI Listing

Publication Analysis

Top Keywords

sphingolipid metabolism
8
pollen
8
gene expression
8
sphingolipid composition
8
Δ4 desaturase
8
desaturase mutant
8
pollen leaves
8
sphingolipid
5
metabolism strikingly
4
strikingly pollen
4

Similar Publications

Relevant studies have demonstrated that plasma metabolites and immune cell characteristics are closely related to colorectal cancer (CRC). However, the causal relationship among these factors remains unclear, particularly regarding whether immune cell traits mediate the causal link between plasma metabolites and CRC. This study employed a two-step, two-sample Mendelian randomization (MR) using summary data from genome-wide association studies (GWAS) to assess causal associations between 1,400 plasma metabolites, 731 immune cell traits, and CRC.

View Article and Find Full Text PDF

The human voltage-gated proton channel (H1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit H1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied H1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound.

View Article and Find Full Text PDF

Anti-GQ1b antibody syndrome is a spectrum of autoimmune disorders affecting nervous systems. We report a case of a 53-year-old woman presenting mydriasis with acute onset of periorbital pain, photophobia, and subsequently, diplopia. Despite weakly positive anti-GQ1b IgG antibody, the patient exhibited atypical features with isolated ophthalmoplegia and absence of classic Miller-Fisher syndrome triad.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a persistent neurodevelopmental disorder affecting brains of children. Mounting evidences support the associations between gut microbial dysbiosis and ASD, whereas detailed mechanisms are still obscure.

Methods: Here we probed the potential roles of gut microbiome in ASD using fecal metagenomics and metabolomics.

View Article and Find Full Text PDF

Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!