Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

Orig Life Evol Biosph

Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan,

Published: June 2015

The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11084-015-9418-5DOI Listing

Publication Analysis

Top Keywords

gadv hypothesis
12
remd simulations
12
three-dimensional conformations
8
constructed glycine
8
glycine alanine
8
alanine aspartic
8
aspartic acid
8
acid valine
8
randomly generated
8
peptides
6

Similar Publications

Why Were [GADV]-amino Acids and GNC Codons Selected and How Was GNC Primeval Genetic Code Established?

Genes (Basel)

January 2023

G&L Kyosei Institute, The Keihanna Academy of Science and Culture (KASC), Keihanna Interaction Plaza, Lab. Wing 3F, 1-7 Hikaridai, Seika-cho, Souraku, Kyoto 619-0237, Japan.

Correspondence relations between codons and amino acids are determined by genetic code. Therefore, genetic code holds a key of the life system composed of genes and protein. According to the GNC-SNS primitive genetic code hypothesis, which I have proposed, it is assumed that the genetic code originated from GNC code.

View Article and Find Full Text PDF

How Did Life Emerge in Chemically Complex Messy Environments?

Life (Basel)

August 2022

G&L Kyosei Institute, The Keihanna Academy of Science and Culture (KASC), Keihanna Interaction Plaza, Lab. Wing 3F, 1-7 Hikaridai, Seika-cho, Souraku, Kyoto 619-0237, Japan.

One of the problems that make it difficult to solve the mystery of the origin of life is determining how life emerged in chemically complex messy environments on primitive Earth. In this article, the "chemically complex messy environments" that are focused on are a mixed state of various organic compounds produced via prebiotic means and accumulated on primitive earth. The five factors described below are thought to have contributed to opening the way for the emergence of life: (1) A characteristic inherent in [GADV]-amino acids, which are easily produced via prebiotic means.

View Article and Find Full Text PDF

The riddle of the origin of life is unsolved as yet. One of the best ways to solve the riddle would be to find a vestige of the first life from databases of DNA and/or protein of modern organisms. It would be, especially, important to know the origin of tRNA, because it mediates between genetic information and the amino acid sequence of a protein.

View Article and Find Full Text PDF

Using atomistic simulations, we show the formation of stable triplet structure when particular GC-rich DNA duplexes are extended in solution over a timescale of hundreds of nanoseconds, in the presence of organic salt. We present planar-stacked triplet disproportionated DNA (Σ DNA) as a possible solution phase of the double helix under tension, subject to sequence and the presence of stabilising co-factors. Considering the partitioning of the duplexes into triplets of base pairs as the first step of operation of recombinase enzymes like RecA, we emphasise the structure-function relationship in Σ DNA.

View Article and Find Full Text PDF

Evolutionary Steps in the Emergence of Life Deduced from the Bottom-Up Approach and GADV Hypothesis (Top-Down Approach).

Life (Basel)

January 2016

G & L Kyosei Institute, Keihannna Labo-401, Hikaridai 1-7, Seika-cho, Sorakugun, Kyoto 619-0237, Japan.

It is no doubt quite difficult to solve the riddle of the origin of life. So, firstly, I would like to point out the kinds of obstacles there are in solving this riddle and how we should tackle these difficult problems, reviewing the studies that have been conducted so far. After that, I will propose that the consecutive evolutionary steps in a timeline can be rationally deduced by using a common event as a juncture, which is obtained by two counter-directional approaches: one is the bottom-up approach through which many researchers have studied the origin of life, and the other is the top-down approach, through which I established the [GADV]-protein world hypothesis or GADV hypothesis on the origin of life starting from a study on the formation of entirely new genes in extant microorganisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!