In the perspective of studying lipid biosynthesis in the argan seed, the anatomy, ploidy level and lipid composition of mature seed tissues were investigated using an experimental design including two locations in Algeria and four years of study. Using flow cytometry, we determined that mature argan seeds consist of two well-developed tissues, the embryo and the endosperm. The lipid content of the embryo was higher than that of the endosperm, but the dry weight of the endosperm was higher. Consequently, both tissues contribute equally to seed oil yield. Considerable differences in fatty acid composition were observed between the two tissues. In particular, the endosperm 18:2 percentage was twofold higher than that of the embryo. The tocopherol content of the endosperm was also markedly higher than that of the embryo. In contrast, the endosperm and the embryo had similar sterol and triterpene alcohol contents and compositions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2015.02.112DOI Listing

Publication Analysis

Top Keywords

embryo endosperm
8
contribute equally
8
argan seed
8
seed oil
8
oil yield
8
higher embryo
8
embryo
6
endosperm
6
endosperm contribute
4
argan
4

Similar Publications

This review covers the latest developments on the regulation of early seed development by phytohormones. The development of seeds in flowering plants starts with the fertilization of the maternal gametes by two paternal sperm cells. This leads to the formation of two products, embryo and endosperm, which are surrounded by a tissue of maternal sporophytic origin, called the seed coat.

View Article and Find Full Text PDF

Imaging Lipidomics and Metallomics of Brown Rice Cultivars Used for Sake Production.

Mass Spectrom (Tokyo)

December 2024

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Many previous studies have reported various phospholipids and elements that affect sake production; however, it seems to be challenging to investigate individual types in each rice variety due to their high diversity, not to mention their distribution patterns. Since its introduction, mass spectrometry imaging (MSI) has gained attention in various fields as a simple compound visualization technique. The current study highlights the progress of powerful MSI in comprehensively analyzing phospholipids and minerals in brown rice for sake production.

View Article and Find Full Text PDF

Hydrological transport and endosperm weakening mechanisms during dormancy release in Tilia henryana seeds.

J Plant Physiol

December 2024

College of Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China; Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China. Electronic address:

Seed germination is a pivotal stage in the plant life cycle, with endosperm weakening and radicle elongation serving as crucial prerequisites for successful endospermic seed germination. Tilia henryana seeds exhibit deep dormancy, necessitating a period of 2-3 years to germinate in a natural environment, and the germination rate is extremely low. This study employed morphological and physiological approaches to dynamically analyzing the hydrological mechanism and the endosperm weakening process during the dormancy release of T.

View Article and Find Full Text PDF

The angiosperm seed represents a critical evolutionary breakthrough that has been shown to propel the reproductive success and radiation of flowering plants. Seeds promote the rapid diversification of angiosperms by establishing postzygotic reproductive barriers, such as hybrid seed inviability. While prezygotic barriers to reproduction tend to be transient, postzygotic barriers are often permanent and therefore can play a pivotal role in facilitating speciation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how temperature affects embryo growth and seed germination in the plant species Conopodium majus across different geographic locations in Europe.
  • It finds that optimal and ceiling temperatures for embryo growth vary with latitude, influencing when seeds germinate, particularly peaking in January and February.
  • The results suggest that understanding thermal thresholds is crucial for predicting how plants will respond to climate change, affecting their growth patterns and distribution.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!