Three-dimensional antiferromagnets with random magnetic anisotropy (RMA) that have been experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe_{x}Ni_{1-x}F_{2} epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean-field theory. Regions with uniaxial, oblique, and easy-plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.114.097201 | DOI Listing |
CO flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
The RE-M-Ge systems (RE: rare earths, M: transition group elements) contain a large number of compounds with special magnetic properties. A novel compound ErMnGe was found during the investigation on the phase diagram of the Er-Mn-Ge ternary system, and its crystal structure and magnetic properties were investigated. Powder X-ray diffraction results show that ErMnGe crystallizes in an orthorhombic YNiSi-type structure with the space group Pnma (No.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Ibaraki, Japan.
The sintered diffusion multiple (SDM) method, which has been developed in our research group, has been applied to determine the entire composition range of the CrMnFeCoNi high-entropy alloy stereoscopically and continuously over nearly the entire range. The samples were prepared by sintering mixed elemental powders and were annealed at 970 °C or 800 °C. Several hundreds of thousands of points were analyzed at random within the samples for chemical compositions using electron probe microanalysis.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig 23119, Turkey.
Electroencephalography (EEG) signal-based machine learning models are among the most cost-effective methods for information retrieval. In this context, we aimed to investigate the cortical activities of psychotic criminal subjects by deploying an explainable feature engineering (XFE) model using an EEG psychotic criminal dataset. In this study, a new EEG psychotic criminal dataset was curated, containing EEG signals from psychotic criminal and control groups.
View Article and Find Full Text PDFSci Rep
January 2025
Geological Survey of Western Australia, Perth, Australia.
It is well recognised that endothermic processes such as dehydration and partial melting have the potential to exert measurable effects on the maximum temperatures reached in metamorphic rock systems. We show migmatitic metapelitic and mafic granulites record temperatures of ~ 820 °C, while spatially associated refractory Mg-Al-rich granulites record temperatures between 865 °C and > 920 °C. These thermally contrasting samples are separated by ~ 1500 m, with no apparent intervening faults or shear zones to explain the apparent difference in peak metamorphic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!