Tricho-rhino-phalangeal syndrome (TRPS) is characterized by craniofacial and skeletal abnormalities, and subdivided in TRPS I, caused by mutations in TRPS1, and TRPS II, caused by a contiguous gene deletion affecting (amongst others) TRPS1 and EXT1. We performed a collaborative international study to delineate phenotype, natural history, variability, and genotype-phenotype correlations in more detail. We gathered information on 103 cytogenetically or molecularly confirmed affected individuals. TRPS I was present in 85 individuals (22 missense mutations, 62 other mutations), TRPS II in 14, and in 5 it remained uncertain whether TRPS1 was partially or completely deleted. Main features defining the facial phenotype include fine and sparse hair, thick and broad eyebrows, especially the medial portion, a broad nasal ridge and tip, underdeveloped nasal alae, and a broad columella. The facial manifestations in patients with TRPS I and TRPS II do not show a significant difference. In the limbs the main findings are short hands and feet, hypermobility, and a tendency for isolated metacarpals and metatarsals to be shortened. Nails of fingers and toes are typically thin and dystrophic. The radiological hallmark are the cone-shaped epiphyses and in TRPS II multiple exostoses. Osteopenia is common in both, as is reduced linear growth, both prenatally and postnatally. Variability for all findings, also within a single family, can be marked. Morbidity mostly concerns joint problems, manifesting in increased or decreased mobility, pain and in a minority an increased fracture rate. The hips can be markedly affected at a (very) young age. Intellectual disability is uncommon in TRPS I and, if present, usually mild. In TRPS II intellectual disability is present in most but not all, and again typically mild to moderate in severity. Missense mutations are located exclusively in exon 6 and 7 of TRPS1. Other mutations are located anywhere in exons 4-7. Whole gene deletions are common but have variable breakpoints. Most of the phenotype in patients with TRPS II is explained by the deletion of TRPS1 and EXT1, but haploinsufficiency of RAD21 is also likely to contribute. Genotype-phenotype studies showed that mutations located in exon 6 may have somewhat more pronounced facial characteristics and more marked shortening of hands and feet compared to mutations located elsewhere in TRPS1, but numbers are too small to allow firm conclusions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2015.03.002DOI Listing

Publication Analysis

Top Keywords

mutations located
16
trps
11
tricho-rhino-phalangeal syndrome
8
trps caused
8
deletion trps1
8
trps1 ext1
8
missense mutations
8
patients trps
8
hands feet
8
intellectual disability
8

Similar Publications

The highly rugged yet navigable regulatory landscape of the bacterial transcription factor TetR.

Nat Commun

December 2024

Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.

Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.

View Article and Find Full Text PDF

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Background: TFE3-translocation renal cell carcinoma (TFE3-tRCC), a distinct subtype of kidney cancer characterized by Xp11.2 translocations, involving TFE3 fusion with various partner genes, lacks effective treatments and prognostic biomarkers for advanced stages. This study aimed to unravel the pathogenic mechanisms and uncover novel therapeutic targets.

View Article and Find Full Text PDF

COVID-19 outbreaks caused by different SARS-CoV-2 variants: a descriptive, comparative study from China.

Front Public Health

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Objectives: To understand the epidemic characteristics of various SARS-CoV-2 variants, we mainly focus on analyzing general epidemic profiles, viral mutation, and evolution of COVID-19 outbreaks caused by different SARS-CoV-2 variants of concern (VOCs) in China as of August 2022.

Methods: We systematically sorted out the general epidemic profiles of outbreaks caused by various SARS-CoV-2 VOCs in China, compared the differences of outbreaks caused by Delta and Omicron VOCs, and analyzed the mutational changes of subvariants between the same outbreak and different outbreaks.

Findings: By 15 August 2022, a total of 2, 33, and 124 COVID-19 outbreaks caused by Alpha, Delta, and Omicron VOCs, respectively, were reported in different regions of China.

View Article and Find Full Text PDF

Point mutations at codon 600 of the BRAF oncogene are the most common alterations in cutaneous melanoma (CM). Assessment of BRAF status allows to personalize patient management, though the affordability of molecular testing is limited in some countries. This study aimed to develop a model for predicting alteration in BRAF based on routinely available clinical and histological data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!