Aims: To investigate the impacts of cytomegalovirus (CMV) viral load, TORCH (toxoplasmosis, others, rubella, CMV and herpes) coinfections, CMV glycoprotein B (gB) genotypes and maternal genetic polymorphisms on pregnancy outcomes among CMV-infected women.
Methods: A total of 731 CMV-infected pregnant women (634 and 97 with normal and adverse pregnancy outcomes, respectively) were recruited. CMV load quantification and screening of TORCH coinfections were performed by using real-time polymerase chain reaction (PCR) and immunodetection techniques, respectively. Genotyping of CMV gB and maternal NFKB1 -94 ins/del, NFKBIA -826C/T and -881A/G polymorphisms was performed by using PCR-restriction fragment length polymorphism.
Results: We found that the mean CMV viral load in women with adverse pregnancy outcomes was significantly higher than that in women with normal outcomes at all pregnancy stages (p < 0.01). We also found that TORCH coinfections resulted in a 1.65-fold (95% CI = 1.00-2.73) increase in the risk of adverse pregnancy outcomes (p = 0.05). Additionally, we noticed no significant difference in the distribution of CMV gB genotypes between women with normal and adverse pregnancy outcomes (p = 0.42). We also observed that the ins/ins variant genotype of the NFKB1 polymorphism could reduce the risk of adverse pregnancy outcomes (OR = 0.38, 95% CI = 0.15-0.98; p = 0.04).
Conclusion: CMV viral load, TORCH coinfections and maternal NFKB1 polymorphism could influence pregnancy outcomes among CMV-infected women.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000370333 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!