A method using wavelength dispersive X-ray spectroscopy (WDS) is applied to the measurement of grain boundary segregation of Sn in silicon steel. The quantification of monolayer concentration of Sn is acquired, which demonstrates an obvious segregation of Sn at grain boundaries. In consideration of the fact that segregated impurities (Sn or other species) distribute in multilayer and not just monolayer segregation can be characterized by WDS, the Gaussian distribution is applied to formulate the multilayer concentration depth distribution according to the measured total concentration. A correction factor is then put forward to improve the quantification. Based on the measured segregation of Sn and the derived formula of multilayer concentration depth distribution, the grain boundary concentrations of Sn are calculated for different thicknesses of segregated layer. From the experimental measurement, theoretical analyses and calculated results, an effective approach for the research of grain boundary segregation is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2015.03.004 | DOI Listing |
Adv Mater
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.
The selective recycling of mixed plastic wastes with similar structural units is challenging. While heterogeneous catalysis shows potential for selective recycling, challenges such as complex mass transfer at multiphase interfaces and unclear catalytic mechanisms have slowed progress. In this study, a breakthrough in recycling mixed polyester wastes is introduced using heterogeneous photothermal catalysis.
View Article and Find Full Text PDFNat Commun
January 2025
The Institute of Technological Sciences, Wuhan University, Wuhan, China.
Flexible perovskite solar cells (F-PSCs) are appealing for their flexibility and high power-to-weight ratios. However, the fragile grain boundaries (GBs) in perovskite films can lead to stress and strain cracks under bending conditions, limiting the performance and stability of F-PSCs. Herein, we show that the perovskite film can facilely achieve in situ bifacial capping via introducing 4-(methoxy)benzylamine hydrobromide (MeOBABr) as the precursor additive.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Nanjing University, Hankou Road 22, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, CHINA.
Driven by the miniaturization of microelectronic devices and their multifunctionalities, the development of new quadruple-perovskite oxides with high dielectric constants and high Curie temperature are highly required. Herein, we report on the structural, dielectric and magnetic properties of Sb/Cr-doped CaCu3Ti4O12 (CCTO) quadruple perovskite oxides, CaCu3Ti3.9Sb0.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.
Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
Black aluminum is a material characterized by high surface porosity due to columnar growth and exhibits unique optical properties that make it attractive for applications such as light trapping, infrared detection, and passive thermal radiation cooling. In this study, we correlate the structural and optical properties of black aluminum by comparing it with conventional reflective aluminum layers. These layers of varying thicknesses were deposited on fused silica substrates, and their optical properties were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!