Evaluation of binding between analytes and its relevant ligands on surface plasmon resonance (SPR) biosensor is of considerable importance for accurate determination and screening of an interference in immunosensors. Dengue virus serotype 2 was used as a case study in this investigation. This research work compares and interprets the results obtained from analytical analysis with the experimental ones. Both the theoretical calculations and experimental results are verified with one sample from each category of dengue serotypes 2 (low, mid, and high positive), which have been examined in the database of established laboratorial diagnosis. In order to perform this investigation, the SPR angle variations are calculated, analyzed, and then validated via experimental SPR angle variations. Accordingly, the error ratios of 5.35, 6.54, and 3.72% were obtained for the low-, mid-, and high-positive-specific immune globulins of patient serums, respectively. In addition, the magnetic fields of the biosensor are numerically simulated to show the effect of different binding mediums.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-015-1262-2 | DOI Listing |
Germs
September 2024
MD, MPH, PhD, Department of Public Health, Faculty of Medicine, Universitas Islam Indonesia, Kaliurang Street KM 14.5 Yogyakarta 55584, Indonesia.
Introduction: Dengue infection poses a serious threat to global public health, including Indonesia. The rapid spread and significant economic impact are crucial concerns for control efforts. Investigating risk factors of dengue virus infection is necessary to formulate effective strategies, particularly at the household level.
View Article and Find Full Text PDFFront Chem
December 2024
African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.
Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
January 2025
Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China.
Dengue virus (DENV) infection, caused by serotypes DENV 1-4, represents a significant global public health challenge, with no antiviral drugs currently available for treatment. The host Protein kinase B (AKT) signaling pathway is crucial for DENV infection, presenting a potential target for antiviral drug development. This study aimed to evaluate the antiviral activity of kinase inhibitors that target the AKT pathway, focusing on the compound AT13148.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine.
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.
View Article and Find Full Text PDFViruses
December 2024
Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan.
This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!