Resveratrol is a phytoalexin that confers overall health benefits including positive regulation in brain function such as learning and cognition. However, whether and how resveratrol affects synaptic activity remains largely unknown. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are glutamatergic receptors that mediate the majority of fast excitatory transmission and synaptic plasticity, and thus play a critical role in higher brain functions, including learning and memory. We find that in rat primary neurons, resveratrol can rapidly increase AMPAR protein level, AMPAR synaptic accumulation and the strength of excitatory synaptic transmission. The resveratrol effect on AMPAR protein expression is independent of sirtuin 1 (SIRT1), the conventional downstream target of resveratrol, but rather is mediated by AMP-activated protein kinase (AMPK) and subsequent downstream phosphoinositide 3-kinase (PI3K)/Akt signaling. Application of the AMPK specific activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) mimics the effects of resveratrol on both signaling and AMPAR expression. The resveratrol-induced increase in AMPAR expression results from elevated protein synthesis via regulation of the eukaryotic initiation factor (eIF) 4E/4G complex. Disruption of the translation initiation complex completely blocks resveratrol-dependent AMPAR up-regulation. These findings indicate that resveratrol may regulate brain function through facilitation of AMPAR biogenesis and synaptic transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466044 | PMC |
http://dx.doi.org/10.1016/j.neuropharm.2015.03.003 | DOI Listing |
Nutrients
January 2025
School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, Brazil.
Studies have demonstrated that resveratrol exerts several pharmacological effects. However, the pharmacokinetic parameters are not completely established. This study describes the plasma pharmacokinetics and tissue distribution of resveratrol after administration by different routes and doses in rats.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia.
Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100010, China.
Osteoarthritis (OA), particularly in the knee and hip, poses a significant global health challenge due to limited therapeutic options. To elucidate the molecular mechanisms of OA and identify potential biomarkers and therapeutic targets, we utilized genome-wide association studies (GWAS) and cis-miRNA expression quantitative trait loci (cis-miR-eQTL) datasets to identify miRNAs associated with OA, revealing 16 that were linked to knee OA and 21 to hip OA. Among these, hsa-miR-1303 was significantly upregulated in both knee and hip OA (IVW: = 6.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
Due to the high mortality rate of ovarian cancer, there is a need to find novel strategies to improve current treatment modalities. Natural compounds offer great potential in this field but also require the careful design of systems for their delivery to cancer cells. Our study explored the anticancer effects of novel resveratrol (RSV)- and curcumin (CUR)-loaded core-shell nanoparticles in human ovarian cancer cells.
View Article and Find Full Text PDFMolecules
January 2025
FEQx Lab, Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain.
Polyphenolic compounds are key elements in sectors such as pharmaceutics, cosmetics and food; thus, their physicochemical characterization is a vital task. In this work, the thermal behavior of seven polyphenols (-resveratrol, -polydatin, kaempferol, quercetin, myricetin, hesperidin, and (-)-epicatechin) was investigated with DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis). Melting temperatures, enthalpies of fusion and decomposition temperatures were determined, and heat capacities were measured in the temperature range from 283.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!