Much effort has been devoted to investigating the molecular geometries, electronic structures, redox properties and nonlinear optical (NLO) properties of Ir complexes involving o-, m- or p-carborane groups by density functional theory (DFT) methods. Switchable second-order NLO properties were induced by redox processes involving these complexes, and it was found that mainly the coordination bonds of Ir complexes changed during the oxidation process. Our calculations revealed that oxidation reactions have a significant influence on the second-order NLO response owing to the change in charge transfer pattern. The β tot values of oxidized species are at least ∼9 times larger for set I and ∼5 times larger for set II than those of the corresponding parent complexes. Introduction of carborane groups into ppy (phenylpyridine) ligands can enhance the second-order NLO response by 1.2- 1.6 times by a metal-to-ligand charge transfer (MLCT) transition between the Ir atom and carborane. The β tot of complex 2 [(ppy)2Ir(phen)](+) (phen = phenanthroline) is 3.3 times larger than that of complex 1 (ppy)2Ir(acce) (acce = acetylacetonate), which is caused by ligand-to-ligand charge transfer (LLCT) between ppy ligands and the ancillary ligand. Therefore, it can be concluded that the second-order NLO response can be effectively enhanced by oxidation reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-015-2650-0 | DOI Listing |
J Am Chem Soc
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.
View Article and Find Full Text PDFChemistry
December 2024
Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic.
Differently substituted pyrrole-azo-benzene molecular photoswitches were prepared in a straightforward synthetic way. Their fundamental properties were investigated by XRD analysis, differential scanning calorimetry, thermogravimetric analysis, cyclic voltammetry, UV-Vis absorption spectroscopy, Hyper-Rayleigh Scattering, and NMR spectroscopy; the experimental results were further corroborated by DFT calculations. Thermal robustness, the HOMO/LUMO levels, and the absorption properties were altered mostly by substituting the N-methylpyrrole moiety and further fine-tuned by modifying the benzene substituents.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
The packing fashion of an organic molecule in the crystal plays a critical role in the global nonlinear optical (NLO) responses under ambient conditions. To better understand how the crystal packing affects the first hyperpolarizability (β) and achieve efficient NLO material, herein, the three positional isomers (regioisomers) through changing the substituted position of 3-carbazole-pyrazine-based isomers were performed. The phenyl groups with different positions (-, -, and -) of pyrazine, named , , and , are theoretically studied in gas, solvent, and solid states by using the polarizable continuum model and the combined quantum mechanics and molecular mechanics method, respectively.
View Article and Find Full Text PDFAcc Chem Res
January 2025
College of Chemistry, Sichuan University, Chengdu 610065, P. R. China.
Phys Chem Chem Phys
January 2025
Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
The effect of conformational dynamics and solvent interactions on the second-order nonlinear optical (NLO) responses of the open and closed forms of a donor-acceptor Stenhouse adduct (DASA) are investigated by a mixed quantum/classical computational approach, which couples molecular dynamics (MD) simulations and time-dependent density functional theory (TD-DFT) calculations. The latter are further combined with various solvation schemes, including polarizable continuum models, hybrid QM/MM approaches using either non polarizable or polarizable electrostatic embedding, and QM/QM' schemes with explicit treatment of a few molecules of the first solvation shell. The performances of the different solvation models are discussed in the context of comparisons with experimental data obtained from hyper-Rayleigh scattering measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!