Cloned, protein antigen-specific, Ia-restricted T cell lines frequently (approximately 20%) also respond strongly to stimulator cells from strains expressing stimulatory alleles at the chromosome 1-encoded Mls-locus. Furthermore, such responses are blocked by monoclonal antibodies specific for Ia antigens expressed by the stimulator rather than the responder cells. However, such responses show no specificity for polymorphic determinants on Ia molecules, although in such responses, as in primary and secondary T cell responses to stimulating Mls-locus alleles, I-E molecules appear to play a central role. These results, combined with the unique immunobiology of the primary T cell proliferative response to Mls-locus-disparate stimulator cells, suggest to us that this response involves the interaction of the receptor on T cells for antigen:self Ia with a relatively nonpolymorphic region of Ia glycoproteins. This hypothesis is supported by the observation that a monoclonal antibody to the T cell receptor will inhibit both responses, although the response to Mls-locus-disparate stimulators appears to be more sensitive to these antibodies. We propose that the interaction of the T cell receptor with Ia is stabilized by a cell interaction molecule encoded or regulated by the Mls-locus gene product permitting the T cell receptor:Ia glycoprotein interaction to lead to T cell activation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stimulator cells
16
mls-locus-disparate stimulator
12
cell
9
cell responses
8
cloned protein
8
protein antigen-specific
8
antigen-specific ia-restricted
8
ia-restricted cell
8
cell lines
8
response mls-locus-disparate
8

Similar Publications

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.

View Article and Find Full Text PDF

Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.

View Article and Find Full Text PDF

Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.

View Article and Find Full Text PDF

Bacteriophage M13KE as a Nanoparticle Platform to Display and Deliver a Pathogenic Epitope: Development of an Effective Porcine Epidemic Diarrhoea Virus Vaccine.

Microb Pathog

January 2025

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China. Electronic address:

Porcine epidemic diarrhoea virus (PEDV) is a porcine enteric coronavirus, outbreaks and epidemics of which have caused huge economic losses to the livestock industry. The disadvantage of existing PEDV vaccines is that the unstable efficacy and high cost limit their widespread use. Therefore, there is an urgent need to develop a recombinant transgenic vaccine candidate for PEDV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!