Objective: White matter diffusivity measures of the fornix change with aging, which likely relates to changes in memory and cognition in older adults. Subregional variations in forniceal diffusivity may exist, given its heterogeneous anatomy and connectivity; however, these have not been closely examined in vivo. We examined diffusivity parameters (fractional anisotropy, FA; radial diffusivity, RD; axial diffusivity, AD) in forniceal subregions of healthy subjects and correlated them with age and hippocampal volume.
Methods: Diffusion-weighted imaging and streamline tractography of the fornix were performed on 20 healthy, right-handed females (23-66 years). Six anatomical subregions were defined: midline (body, column, precommissural fornix) or lateral (fimbria, crura, postcommissural fornix). Regression analysis was performed comparing diffusivities against age. Hippocampal and ventricular volumes were also compared.
Results: Diffusivity values revealed statistical changes with age in both midline and lateralized subregions. The fornix body and left crus showed age-related alterations in all metrics (FA, RD, AD), whereas only right crus FA was altered. There was no significant change in hippocampal volumes, suggesting that forniceal changes may precede hippocampal age-related changes.
Conclusions: Age-related changes in fornix diffusivity measures appear subregion dependent and asymmetrical. Specific subregion diffusivity measures may be a more sensitive aging marker than hippocampal volume change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000368442 | DOI Listing |
PLoS One
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development.
View Article and Find Full Text PDFACS Earth Space Chem
January 2025
School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, U.K.
2-Cyanoindene is one of the few specific aromatic or polycyclic aromatic hydrocarbon (PAH) molecules positively identified in Taurus molecular cloud-1 (TMC-1), a cold, dense molecular cloud that is considered the nearest star-forming region to Earth. We report cryogenic mid-infrared (550-3200 cm) and visible (16,500-20,000 cm, over the ← electronic transition) spectra of 2-cyanoindene radical cations (2CNI), measured using messenger tagging (He and Ne) photodissociation spectroscopy. The infrared spectra reveal the prominence of anharmonic couplings, particularly over the fingerprint region.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
Background: Magnetic resonance (MR) diffusion-derived 'vessel density' (DDVD) is calculated according to: DDVD = Sb0/ROI - S/ROI, where S and S refer to the tissue signal when -value is 0 or 2 s/mm. S and ROI can also be approximated by other low -values diffusion-weighted imaging (DWI). This study investigates the influence of the second motion probing gradient -value and T2 on DDVD calculations of the liver, spleen, and liver simple cyst.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.
Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Copenhagen, 1958, Denmark.
Lignin's complex and heterogeneous molecular structure poses significant challenges for accurate molar mass determination, which is important for its utilization in industrial applications, such as biochemicals, nanoparticles, biobased binders, and biofuels. This study evaluates the potential of Taylor Dispersion Analysis (TDA) for measuring lignin size and compares it with size-exclusion chromatography (SEC) and diffusion-ordered spectroscopy (DOSY) NMR. Using dual Gaussian fitting, flow-induced dispersion analysis (FIDA), a TDA-based method, successfully determined the average hydrodynamic radii of multiple species in solvent-fractionated soda grass lignin samples, producing results consistent with DOSY.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!