The BsgA protease is required for the earliest morphological changes observed in Myxococcus xanthus development. We hypothesize that the BsgA protease is required to cleave an inhibitor of the developmental program, and isolation of genetic bypass suppressors of a bsgA mutant was used to identify signaling components controlling development downstream of the BsgA protease. Strain M955 was created by transposon mutagenesis of a bsgA mutant followed by screening for strains that could develop despite the absence of the BsgA protease. Strain M955 was able to aggregate, form fruiting bodies, and partially restored the production of viable spores in comparison to the parental bsgA mutant. The bsgA Tn5Ω955 strain partially restored developmental expression to a subset of genes normally induced during development, and expressed one developmentally induced fusion at higher amounts during vegetative growth in comparison to wild-type cells. The transposon in strain M955 was localized to a Ribonuclease D homolog that appears to exist in an operon with a downstream aminopeptidase-encoding gene. The identification of a third distinct bypass suppressor of the BsgA protease suggests that the BsgA protease may regulate a potentially complex pathway during the initiation of the M. xanthus developmental program.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnu028DOI Listing

Publication Analysis

Top Keywords

bsga protease
28
bsga mutant
12
strain m955
12
bsga
11
myxococcus xanthus
8
protease required
8
developmental program
8
protease strain
8
partially restored
8
protease
7

Similar Publications

The BsgA protease is required for the earliest morphological changes observed in Myxococcus xanthus development. We hypothesize that the BsgA protease is required to cleave an inhibitor of the developmental program, and isolation of genetic bypass suppressors of a bsgA mutant was used to identify signaling components controlling development downstream of the BsgA protease. Strain M955 was created by transposon mutagenesis of a bsgA mutant followed by screening for strains that could develop despite the absence of the BsgA protease.

View Article and Find Full Text PDF

The BsgA protease is required for starvation-induced development in Myxococcus xanthus. Bypass suppressors of a bsgA mutant were isolated to identify genes that may encode additional components of BsgA protease-dependent regulation of development. Strain M951 was isolated following Tn5 mutagenesis of a bsgA mutant and was capable of forming fruiting bodies and viable spores in the absence of the BsgA protease.

View Article and Find Full Text PDF

Mutations in spdR, previously reported to bypass the developmental requirement for B-signaling in Myxococcus xanthus, also bypass the requirement for A-signaling but not C-, D-, or E-signaling. Mutations in spdR restored nearly wild-type levels of sporulation to representative A-signal-deficient mutants carrying asgA476, asgB480, and asgC767 and improved the quality of fruiting body formation in the asgB480 mutant. The defect in A-factor production by the asgB480 mutant was not restored in the spdR2134 asgB480 double mutant.

View Article and Find Full Text PDF

The BsgA protease of Myxococcus xanthus is an intracellular protease closely related to the Lon protease of Escherichia coli. BsgA is required for normal levels of developmentally induced gene expression. In this report, we describe the identification of mutations that suppress the developmental defect of bsgA mutants.

View Article and Find Full Text PDF

A new developmental gene, fruA, of Myxococcus xanthus was cloned using a one-step cloning vector, TnV. DNA sequencing of the wild-type allele of the fruA gene indicated that the fruA gene encodes a protein of 229 amino acid residues with a calculated molecular weight of 24672. The deduced amino acid sequence of FruA protein showed similarity to those of many bacterial regulatory proteins carrying a DNA-binding helix-turn-helix motif.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!