The human glycine receptors (hGlyRs) are chloride-selective ion channels that mediate inhibitory neurotransmission in the brain stem and spinal cord. They are also targets for compounds of potential use in analgesic therapies. Here, we develop a strategy to discover analgesic drugs via structure-based virtual screening based on the recently published NMR structure of the hGlyR-α1 transmembrane domain (PDB ID: 2M6I ) and the critical role of residue S296 in hGlyR-α1 potentiation by Δ(9)-tetrahydrocannabinol (THC). We screened 1549 FDA-approved drugs in the DrugBank database on an ensemble of 180 hGlyR-α1 structures generated from molecular dynamics simulations of the NMR structure of the hGlyR-α1 transmembrane domain in different lipid environments. Thirteen hit compounds from the screening were selected for functional validation in Xenopus laevis oocytes expressing hGlyR-α1. Only one compound showed no potentiation effects; seven potentiated hGlyR-α1 at a level greater than THC at 1 μM. Our virtual screening protocol is generally applicable to drug targets with lipid-facing binding sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414066PMC
http://dx.doi.org/10.1021/jm501873pDOI Listing

Publication Analysis

Top Keywords

virtual screening
12
human glycine
8
nmr structure
8
structure hglyr-α1
8
hglyr-α1 transmembrane
8
transmembrane domain
8
hglyr-α1
6
ensemble-based virtual
4
screening
4
screening cannabinoid-like
4

Similar Publications

Background: 2022 survey data showed 29% of Veterans utilized Veterans Affairs (VA) paid health care at a non-VA facility, 6% higher than in 2021. Despite an increase in the number of Veterans accessing care in the community via the MISSION Act Community Care Program (CCP), there is limited information on the quality of mental health care delivered to Veterans in these settings. Further, Veterans report barriers to quality care, including poor communication between CCP and VA providers, which can result in negative patient outcomes.

View Article and Find Full Text PDF

Discovery of novel dual-target inhibitors of LSD1/EGFR for non-small cell lung cancer therapy.

Acta Pharmacol Sin

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.

Histone lysine-specific demethylase 1 (LSD1) is overexpressed in various solid and hematological tumors, suggesting its potential as a therapeutic target, but there are currently no LSD1 inhibitors available on the market. In this study we employed a computer-guided approach to identify novel LSD1/EGFR dual inhibitors as a potential therapeutic agent for non-small cell lung cancer. Through a multi-stage virtual screening approach, we found L-1 and L-6, two compounds with unique scaffolds that effectively inhibit LSD1 with IC values of 6.

View Article and Find Full Text PDF

The impact of library size and scale of testing on virtual screening.

Nat Chem Biol

January 2025

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.

Virtual ligand libraries for ligand discovery have recently increased 10,000-fold. Whether this has improved hit rates and potencies has not been directly tested. Meanwhile, typically only dozens of docking hits are assayed, clouding hit-rate interpretation.

View Article and Find Full Text PDF

Background: Pain inhibits rehabilitation. In rehabilitation at medical institutions, the usefulness of virtual reality (VR) has been reported in many cases to alleviate pain. In recent years, the demand for home rehabilitation has increased.

View Article and Find Full Text PDF

Discovery of cyanidin-3-O-galactoside as a novel CNT2 inhibitor for the treatment of hyperuricemia.

Bioorg Chem

December 2024

Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. Electronic address:

Inhibition of human concentrative nucleoside transporter 2 (CNT2) could suppress increases in serum urate levels derived from dietary purines. However, the structural basis for substrate recognition of CNT2 is still unknown and only a few inhibitors have been reported. In this study, a homology model of CNT2 was constructed and residues T315, E316, N426, N491, E492, F536 and N538 were identified as binding sites for adenosine through site-directed mutagenesis and a H-adenosine uptake assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!