Halogenated quinones (XQ) are a class of carcinogenic intermediates and newly identified chlorination disinfection byproducts in drinking water. Organic hydroperoxides (ROOH) can be produced both by free radical reactions and enzymatic oxidation of polyunsaturated fatty acids. ROOH have been shown to decompose to alkoxyl radicals via catalysis by transition metal ions, which may initiate lipid peroxidation or transform further to the reactive aldehydes. However, it is not clear whether XQ react with ROOH in a similar manner to generate alkoxyl radicals metal-independently. By complementary applications of ESR spin-trapping, HPLC/high resolution mass spectrometric and other analytical methods, we found that 2,5-dichloro-1,4-benzoquinone (DCBQ) could significantly enhance the decomposition of a model ROOH tert-butylhydroperoxide, resulting in the formation of t-butoxyl radicals independent of transition metals. On the basis of the above findings, we detected and identified, for the first time, an unprecedented C-centered quinone ketoxy radical. Then, we extended our study to the more physiologically relevant endogenous ROOH 13-hydroperoxy-9,11-octadecadienoic acid and found that DCBQ could also markedly enhance its decomposition to generate the reactive lipid alkyl radicals and the genotoxic 4-hydroxy-2-nonenal (HNE). Similar results were observed with other XQ. In summary, these findings demonstrated that XQ can facilitate ROOH decomposition to produce reactive alkoxyl, quinone ketoxy, lipid alkyl radicals, and genotoxic HNE via a novel metal-independent mechanism, which may explain partly their potential genotoxicity and carcinogenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx500486z | DOI Listing |
Chem Sci
January 2025
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Science, Xihua University, Chengdu, 610039, People's Republic of China.
A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Agronomy, Abdul Wali Khan University, Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology Beijing, School of Chemistry and Biological Engineering, CHINA.
Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India.
The conversion of solar energy into chemical energy or high-value chemicals has attracted considerable research interest in the context of the global energy crisis. Hydrogen peroxide (HO) is a versatile and powerful oxidizing agent widely used in chemical synthesis and medical disinfection. HO also serves as a clean energy source in fuel cells, generating electricity with zero-carbon emissions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!