Objective: This study evaluated the function and structural consequences of direct exposure of murine hepatoma MH-22a cells to polychromatic polarized light, to determine potential risk of malignancy following irradiation.

Background Data: Visible (VIS) and infrared (IR) light have been actively used for prevention and treatment of complications developed after conventional tumor therapy. However, the safety associated with this irradiation has not been determined.

Materials And Methods: Polychromatic light (480-3400 and 385-750 nm), were used at different doses (4.8-38.4 J/cm(2)) to determine the viability, proliferation, and actin cytoskeleton in vitro by flow cytometry and confocal microscopy. Tumorogenic properties of cells were studied in vivo after transplantation in C3HA mice.

Results: Polychromatic light of a wide range of doses did not change the viability and proliferation of cells. After transplantation of cells irradiated with VIS-IR light (4.8 and 9.6 J/cm(2)) and VIS light (38.4 J/cm(2)) the tumor volume was lower in the treated group than in the control group in vivo. Transplantability of the irradiated cells also decreased, whereas survival of tumor-bearing mice increased. Three cell populations with different cytoskeleton structure were identified. After irradiation, the reorganized part of the actin cytoskeleton changed its localization to the submembranous area.

Conclusions: A decrease of tumorigenicity in cells irradiated with polychromatic light used in non-damaging doses correlated with an increase in the number of cells with reorganized actin in the submembranous area. The results of the present study argue in favor of the oncological safety of polychromatic VIS-IR light (480-3400 nm).

Download full-text PDF

Source
http://dx.doi.org/10.1089/pho.2014.3838DOI Listing

Publication Analysis

Top Keywords

actin cytoskeleton
12
polychromatic light
12
light
9
murine hepatoma
8
viability proliferation
8
cells irradiated
8
vis-ir light
8
reorganized actin
8
cells
7
polychromatic
6

Similar Publications

Background: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.

Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).

View Article and Find Full Text PDF

Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.

View Article and Find Full Text PDF

Actin instability alters red blood cell mechanics and Piezo1 channel activity.

Biomech Model Mechanobiol

January 2025

CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy.

The organization and dynamics of the spectrin-actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume.

View Article and Find Full Text PDF

Budding yeast cells multiply by asymmetric cell division. During this process, the cell organelles are transported by myosin motors along the actin cytoskeleton into the growing bud, while at the same time some organelles must be retained in the mother cell. The ordered partitioning of organelles depends on highly regulated binding of motor proteins to cargo membranes.

View Article and Find Full Text PDF

The initiation of embryogenesis in the kelp Saccharina latissima is accompanied by significant anisotropy in cell shape. Using monoclonal antibodies, we show that this anisotropy coincides with a spatio-temporal pattern of accumulation of alginates in the cell wall of the zygote and embryo. Alginates rich in guluronates as well as sulphated fucans show a homogeneous distribution in the embryo throughout Phase I of embryogenesis, but mannuronate alginates accumulate mainly on the sides of the zygote and embryo, disappearing as the embryo enlarges at the start of Phase II.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!