Microalgae are currently emerging as one of the most promising alternative sources for the next generation of food, feed, cosmetics and renewable energy in the form of biofuel. Microalgae constitute a diverse group of microorganisms with advantages like fast and efficient growth. In addition, they do not compete for arable land and offer very high lipid yield potential. Major challenges for the development of this resource are to select lipid-rich strains using high-throughput staining for neutral lipid content in microalgae species. For this purpose, the fluorescent dyes most commonly used to quantify lipids are Nile red and BODIPY 505/515. Their fluorescent staining for lipids offers a rapid and inexpensive analysis tool to measure neutral lipid content, avoiding time-consuming and costly gravimetric analysis. This review collates and presents recent advances in algal lipid staining and focuses on Nile red and BODIPY 505/515 staining characteristics. The available literature addresses the limitations of fluorescent dyes under certain conditions, such as spectral properties, dye concentrations, cell concentrations, temperature and incubation duration. Moreover, the overall conclusion of the present review study gives limitations on the use of fluorochrome for screening of lipid-rich microalgae species and suggests improved protocols for staining recalcitrant microalgae and recommendations for the staining quantification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364489 | PMC |
http://dx.doi.org/10.1186/s13068-015-0220-4 | DOI Listing |
Environ Res
January 2025
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.. Electronic address:
Microplastics (MPs), defined as plastic particles smaller than 5 mm, have garnered considerable attention owing to their potential biological impact on human health. These particles exhibit a range of physicochemical properties, including size, shape, and surface oxidation. Nile Red is a prominent tool for detecting microplastics, enabling staining for dynamic analyses within biological systems.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.
Background/objectives: Côa Valley, located in the northeast of Portugal, harbors more than 500 medicinal plant species. Among them, four species stand out due to their traditional uses: Desf. (hemorrhages, urethritis, hepatitis), L.
View Article and Find Full Text PDFMicroorganisms
December 2024
Advanced Institute of Convergence Technology, Suwon 16229, Republic of Korea.
The lipid content of nine dinoflagellates was analyzed using flow cytometry to compare lipid levels. Additionally, the correlation between lipid content, cell size, and carbon content in dinoflagellates was evaluated using BODIPY 505/515 staining. The flow cytometry side scatter (SSC) effectively represented relative cell size, showing a linear relationship with the equivalent spherical diameter (ESD).
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Environmental Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
The leakage and accumulation of plastic in the environment is a significant and growing problem with numerous detrimental impacts and has led to a push toward the design and development of more environmentally benign materials. To this end we have developed a quantum chemistry (QC) based model for predicting the mobility of polymer materials from molecular structure. Hydrophobicity is used as a surrogate for mobility given that hydrophobic interactions drive much of the partitioning of contaminants in and out of various environmentally relevant compartments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!