A computational approach for estimating the overall, population, and individual cancer hazard rates was developed. The population rates characterize a risk of getting cancer of a specific site/type, occurring within an age-specific group of individuals from a specified population during a distinct time period. The individual rates characterize an analogous risk but only for the individuals susceptible to cancer. The approach uses a novel regularization and anchoring technique to solve an identifiability problem that occurs while determining the age, period, and cohort (APC) effects. These effects are used to estimate the overall rate, and to estimate the population and individual cancer hazard rates. To estimate the APC effects, as well as the population and individual rates, a new web-based computing tool, called the CancerHazard@Age, was developed. The tool uses data on the past and current history of cancer incidences collected during a long time period from the surveillance databases. The utility of the tool was demonstrated using data on the female lung cancers diagnosed during 1975-2009 in nine geographic areas within the USA. The developed tool can be applied equally well to process data on other cancer sites. The data obtained by this tool can be used to develop novel carcinogenic models and strategies for cancer prevention and treatment, as well as to project future cancer burden.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354330 | PMC |
http://dx.doi.org/10.4137/CIN.S19777 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!