In cerebellum-like circuits, synapses from thousands of granule cells converge onto principal cells. This fact, combined with theoretical considerations, has led to the concept that granule cells encode afferent input as a population and that spiking in individual granule cells is relatively unimportant. However, granule cells also provide excitatory input to Golgi cells, each of which provide inhibition to hundreds of granule cells. We investigated whether spiking in individual granule cells could recruit Golgi cells and thereby trigger widespread inhibition in slices of mouse cochlear nucleus. Using paired whole-cell patch-clamp recordings, trains of action potentials at 100 Hz in single granule cells was sufficient to evoke spikes in Golgi cells in ∼40% of paired granule-to-Golgi cell recordings. High-frequency spiking in single granule cells evoked IPSCs in ∼5% of neighboring granule cells, indicating that bursts of activity in single granule cells can recruit feedback inhibition from Golgi cells. Moreover, IPSPs mediated by single Golgi cell action potentials paused granule cell firing, suggesting that inhibitory events recruited by activity in single granule cells were able to control granule cell firing. These results suggest a previously unappreciated relationship between population coding and bursting in single granule cells by which spiking in a small number of granule cells may have an impact on the activity of a much larger number of granule cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363397 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3665-14.2015 | DOI Listing |
Methods Mol Biol
January 2025
Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.
The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules-a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers.
View Article and Find Full Text PDFTo investigate the therapeutic effect of Fuzheng Tongluo Granules on idiopathic pulmonary fibrosis(IPF) and its mechanism. Seventy-two SD rats were randomly divided into the control group, model group, pirfenidone group(162 mg·kg~(-1)), and low-, medium-and high-dose of Fuzheng Tongluo Granules groups(2.63, 5.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.
The study employed network Meta-analysis to evaluate the efficacy and safety of Chinese patent medicines combined with recombinant human interferon α-2b(interferon) in the treatment of cervical human papillomavirus(HPV) infections. The relevant randomized controlled trial(RCT) published from inception to May 8, 2024 were retrieved from CNKI, Wanfang, VIP, SinoMed, PubMed, Cochrane Library, EMbase, and Web of Science. The modified Jadad scale and the Cochrane risk of bias tool were used to evaluate the quality of the included studies, and RevMan 5.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!