Structurally motivated material models may provide increased insights into the underlying mechanics and physics of arteries under physiological loading conditions. We propose a multiscale model for arterial tissue capturing three different scales (i) a single collagen fibre; (ii) bundle of collagen fibres; and (iii) collagen network within the tissue. The waviness of collagen fibres is introduced by a probability density function for the recruitment stretch at which the fibre starts to bear load. The three-dimensional distribution of the collagen fibres is described by an orientation distribution function using the bivariate von Mises distribution, and fitted to experimental data. The strain energy for the tissue is decomposed additively into a part related to the matrix material and a part for the collagen fibres. Volume fractions account for the matrix/fibre constituents. The proposed model only uses two parameters namely a shear modulus of the matrix material and a (stiffness) parameter related to a single collagen fibre. A fit of the multiscale model to representative experimental data obtained from the individual layers of a human thoracic aorta shows that the proposed model is able to adequately capture the nonlinear and anisotropic behaviour of the aortic layers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387538 | PMC |
http://dx.doi.org/10.1098/rsif.2015.0111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!