The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402952 | PMC |
http://dx.doi.org/10.1128/CMR.00117-14 | DOI Listing |
Sci Adv
January 2025
Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.
View Article and Find Full Text PDFNIHR Open Res
September 2024
Centre for Trials Research, Cardiff University, Cardiff, Wales, CF14 4YS, UK.
Background: Our patient and public involvement activities were part of a project aiming to develop a master protocol and National Institute for Health and Care research application for the PROTECT trial aiming to assess the effectiveness, implementation, and efficiency of antimicrobial stewardship interventions, to safely reduce unnecessary antibiotic usage by excluding severe bacterial infection in acutely unwell patients.
Methods: Three public involvement sessions were held with representation from young people and parents, people from diverse backgrounds and people with experience of presenting to the emergency department with undifferentiated illness. The teleconference meetings lasted between 60-90 minutes, were recorded, notes were subsequently taken, and findings summarised.
Int J Microbiol
January 2025
Department of Biochemistry, Faculty of Science, Université de Dschang, Dschang, Cameroon.
Cases of antibiotic-resistant () infections are becoming increasingly frequent and represent a major threat to our ability to treat cancer patients. The emergence of antimicrobial resistance threatens the treatment of infections. In this study, the antimicrobial profiles, virulent genes, and the frequency of extended-spectrum beta-lactamase (ESBL) gene carriage in fecal isolates from cancer patients at the Laquintinie Hospital in Douala (Cameroon) were determined.
View Article and Find Full Text PDFFront Antibiot
December 2022
Commonwealth Scientific and Industrial Research Organization, Black Mountain Science and Innovation Park, Acton, ACT, Australia.
Introduction: Globally, the demand for animal protein for human consumption has beenQ7 Q6increasing at a faster rate in the last 5 to 10 decades resulting in increasedantimicrobial consumption in food producing animals. Antimicrobials arefrequently used as part of modern methods of animal production, which mayput more pressure on evolution of antibiotic resistant bacteria. Despite theserious negative effects on animal and human health that could result fromusing antibiotics, there are no assessment of antimicrobials consumed by thelivestock sector in Fiji as well as other Pacific Island Countries.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.
The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!