A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of a two-stage framework for prediction using big genomic data. | LitMetric

We are in the era of abundant 'big' or 'high-dimensional' data. These data afford us the opportunity to discover predictors of an event of interest, and to estimate occurrence of the event based on values of these predictors. For example, 'genome-wide association studies' examine millions of single-nucleotide polymorphisms (SNPs), along with disease status. We can learn SNPs that affect disease status from these data sets, and use the knowledge learned to predict disease likelihood. Owing to the large number of features, it is difficult for many prediction methods to use all the features directly. The ReliefF algorithm ranks a set of features in terms of how well they predict a target. It can be used to identify good predictors, which can then be provided to a prediction method. We compared the performance of eight prediction methods when predicting binary outcomes using high-dimensional discrete data sets. We performed two-stage prediction, where ReliefF is used in the first stage to identify good predictors. Bayesian network (BN)-based methods performed best overall. Furthermore, ReliefF did not improve their performance. The BN-based methods use the Bayesian Dirichlet Equivalent Uniform score to evaluate candidate models, and use BN inference algorithms to perform prediction. This score and these algorithms were developed for discrete variables. This perhaps explains why they perform better in this domain. Many prediction methods are available, and researchers have little reason for choosing one over the other in the domain of binary prediction using high-dimensional data sets. Our results indicate that the best choices overall are BN-based methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652616PMC
http://dx.doi.org/10.1093/bib/bbv010DOI Listing

Publication Analysis

Top Keywords

data sets
12
prediction methods
12
bn-based methods
12
prediction
8
disease status
8
identify good
8
good predictors
8
data
6
methods
6
evaluation two-stage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!