Self-generated local heating induced nanojoining for room temperature pressureless flexible electronic packaging.

Sci Rep

1] Centre for Advanced Materials Joining, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada [2] Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.

Published: March 2015

Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm · m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365387PMC
http://dx.doi.org/10.1038/srep09282DOI Listing

Publication Analysis

Top Keywords

local heating
16
silver nanowire
12
nanowire paste
12
self-generated local
8
room temperature
8
metallic bonding
8
water-based silver
8
heating
4
heating induced
4
induced nanojoining
4

Similar Publications

The current piston material, Al-12Si, lacks sufficient passivation in the acidic lubrication system of biodiesel engines, making it prone to corrosion in the presence of Cl. Fe amorphous particles exhibit good compatibility with Al-12Si, possessing strong corrosion resistance, excellent passivation ability, and good high-temperature stability. They are a potential reinforcement for enhancing the Al-12Si piston material.

View Article and Find Full Text PDF

We examine the collective motion in computational models of a two-dimensional dusty plasma crystal and a charged colloidal suspension as they approach their respective melting transitions. To unambiguously identify rearrangement events in the crystal, we map the trajectory of configurations from an equilibrium molecular dynamics simulation to the corresponding sequence of configurations of local potential energy minima ("inherent structures"). This inherent structure (IS) trajectory eliminates the ambiguity that arises from localized vibrational motion.

View Article and Find Full Text PDF

High-energy metal deposition significantly impacts the performance and reliability of two-dimensional (2D) semiconductors and nanodevices. This study investigates the localized annealing effect in atomically thin InO induced during high-energy metal deposition. The localized heating effect alters the electronic performance of InO devices, especially in shorter channel devices, where heat dissipation is further constrained.

View Article and Find Full Text PDF

Range and accuracy of in-plane anisotropic thermal conductivity measurement using the laser-based Ångstrom method.

Rev Sci Instrum

January 2025

Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

High heat fluxes in electronic devices must be effectively dissipated to prevent local hotspots, which are critical for long-term device reliability. In particular, advanced semiconductor packaging trends toward thin form factor products increase the need for understanding and improving in-plane conduction heat spreading in anisotropic materials. The 2D laser-based Ångstrom method, an extension of traditional Ångstrom and lock-in thermography techniques, measures in-plane thermal properties of anisotropic sheet-like materials.

View Article and Find Full Text PDF

Genetic differentiation in traits is assumed to frequently occur in response to divergent natural selection. For example, developmental traits might respond to differences in climate. However, little is known about when and at which spatial scales environmental differences lead to genetic differentiation, and to what extent there is genetic differentiation also in trait plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!