Second-order sensory neurons are dependent on afferents from the sense organs during a critical period in development for their survival and differentiation. Past research has mostly focused on whole populations of neurons, hampering progress in understanding the mechanisms underlying these critical phases. To move toward a better understanding of the molecular and cellular basis of afferent-dependent neuronal development, we developed a new model to study the effects of ear removal on a single identifiable cell in the hindbrain of a frog, the Mauthner cell. Ear extirpation at various stages of Xenopus laevis development defines a critical period of progressively-reduced dependency of Mauthner cell survival/differentiation on the ear afferents. Furthermore, ear removal results in a progressively decreased reduction in the number of dendritic branches. Conversely, addition of an ear results in an increase in the number of dendritic branches. These results suggest that the duration of innervation and the number of inner ear afferents play a quantitative role in Mauthner cell survival/differentiation, including dendritic development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010663PMC
http://dx.doi.org/10.1002/dneu.22287DOI Listing

Publication Analysis

Top Keywords

critical period
12
mauthner cell
12
dendritic development
8
ear removal
8
cell survival/differentiation
8
ear afferents
8
number dendritic
8
dendritic branches
8
ear
7
development
5

Similar Publications

Importance: Multiple organ dysfunction (MOD) is a leading cause of in-hospital child mortality. For survivors, posthospitalization health care resource use and costs are unknown.

Objective: To evaluate longitudinal health care resource use and costs after hospitalization with MOD in infants (aged <1 year) and children (aged 1-18 years).

View Article and Find Full Text PDF

Importance: Delirium is common after cardiac surgery and associated with adverse outcomes. Intraoperative benzodiazepines may increase postoperative delirium but restricting intraoperative benzodiazepines has not yet been evaluated in a randomized trial.

Objective: To determine whether an institutional policy of restricted intraoperative benzodiazepine administration reduced the incidence of postoperative delirium.

View Article and Find Full Text PDF

Isolation of Soil Microorganisms Using iChip Technology.

J Vis Exp

January 2025

Charlottetown Research and Development Center, Agriculture and Agri-Food Canada; Department of Chemistry, University of Prince Edward Island;

The iChip isolation technique uses an in-situ isolation device that increases the cultivability of previously unculturable microorganisms. Microorganisms are an important source of novel chemistries and potentially bioactive molecules. However, only 1% of environmental microorganisms can be cultured using conventional laboratory methods.

View Article and Find Full Text PDF

is a predominant cause of post-operative surgical site infections and persistent bacteremia. Here, we describe a patient who experienced three episodes of infection over a period of 4 months following a total knee arthroplasty. The initial bloodstream isolate (SAB-0429) was a clonal complex 5 (CC5) and methicillin-resistant (MRSA), whereas two subsequent isolates (SAB-0485 and SAB-0495) were CC5 isolates but methicillin-sensitive .

View Article and Find Full Text PDF

Objective: This study aimed to assess the safety and efficacy of tissue Plasminogen Activator (tPA) in patients with COVID-19-induced severe Acute Respiratory Distress Syndrome (ARDS).

Methods: The intervention group consisted of eligible patients with severe ARDS due to COVID-19 admitted to the Intensive Care Unit (ICU) of a university hospital. We selected the control group from admitted patients treated in the same ICU within the same period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!