Depending on the concentration of a lectin analyte, supramolecular soft nanotubes, bearing recognition sites immobilized on the outer surface through ethylene glycol chains, hierarchically organized into naked-eye-detectable liquid crystals and hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cc01464f | DOI Listing |
Analyst
January 2025
Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China.
The choices of matrices and protocols for sample deposition are critical factors, which impact each other in the matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Previous reports on MALDI MS matrices have only compared their performances in terms of their MS signal intensities and provided optical microphotos or MALDI MS images of sample spots but typically lacked quantitative evaluation. Therefore, there is an urgent need to develop a multivariate model to evaluate the performance of different combinations of matrices and sample protocols.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:
The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).
View Article and Find Full Text PDFAdv Mater
January 2025
School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials.
View Article and Find Full Text PDFSoft Matter
January 2025
College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, P. R. China.
Bio-friendly antibacterial -halamine polymers were used to modify gold nanorods (GNR@pAMPS-Cl), which showed excellent antimicrobial activity against antibiotic-resistant bacteria and accelerated the healing of MRSA-infected wounds. This work provides a new strategy for the preparation of nanoscale antibacterial materials.
View Article and Find Full Text PDFSmall
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!