Unlabelled: Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered "nectin-4-blind" recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes.
Importance: While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS) infections is that persistence is based on noncytolytic cell-to-cell spread, which, in the case of CDV, was demonstrated to rely on functional membrane fusion machinery complexes. This inferred a mechanism where nucleocapsids are transmitted through macroscopically invisible microfusion events between infected and target cells. Here, we provide evidence that CDV induces such microfusions in a SLAM- and nectin-4-independent manner, thereby strongly suggesting the existence of a third receptor expressed in glial cells (referred to as GliaR). We propose that GliaR governs intercellular transfer of nucleocapsids and hence contributes to viral persistence in the brain and ensuing demyelinating lesions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442543 | PMC |
http://dx.doi.org/10.1128/JVI.00004-15 | DOI Listing |
BMC Vet Res
January 2025
The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand.
The canine distemper virus (CDV) could infect various wildlife species worldwide. The viral infection in large felids directly impacts wildlife conservation. This study aimed to understand better the burden of CDV outbreaks in captive tiger populations in Thailand and a novel discovery of their clinical signs with a history of CDV exposure.
View Article and Find Full Text PDFVet Sci
January 2025
Agricultural Sciences Center, Universidade Federal da Paraiba, Areia 58397-000, Paraiba, Brazil.
The literature regarding causes of animal mortality varies greatly in how it evaluates and describes reasons for euthanasia, showing a clear need for tools to identify, standardize, and map diseases. This study describes the application of the Animal Mortality Information System Database (DATASIMA) to monitoring and georeferencing animal mortality. An observational study was conducted on the dogs and cats euthanized at the Municipal Center for Environmental and Zoonotic Surveillance in João Pessoa, Paraíba.
View Article and Find Full Text PDFComp Immunol Microbiol Infect Dis
January 2025
Graduated Student in doctor of Veterinary Medicine, Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran. Electronic address:
Canine distemper virus (CDV) causes a highly contagious and lethal disease in a vast range of carnivorous and non-carnivorous species. The study aimed to genetically investigate the hemagglutinin (H) gene and Fsp-coding region of CDV isolates from vaccinated dogs. Phylogenetic analysis of the H gene and Fsp-coding region showed that our viruses belonged to the Arctic-like lineage which was distinct from two commonly used vaccine strains (America-1 lineage strains) in Iran.
View Article and Find Full Text PDFBMC Vet Res
January 2025
College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
Background: Aleutian mink disease, mink viral enteritis and canine distemper are known as the three most serious diseases that cause great economic loss in the mink industry. In clinical practice, aleutian mink disease virus (AMDV), mink enteritis virus (MEV) and canine distemper virus (CDV) are common mixed infections, and they have similar clinical clinical signs, such as diarrhoea. Therefore, a rapid and accurate differential diagnosis method for use on mink ranches is essential for the control of these three pathogens.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Veterinary Medicine in Universities of Sichuan Province, College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu 610041, China.
Canine distemper (CD) is a highly infectious disease of dogs which is caused by canine distemper virus (CDV). Previous studies have demonstrated that CDV infection can induce autophagy in cells. However, the mechanism underlying CDV-induced autophagy remains not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!