ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn(2+) and Mn(2+) from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn(2+) or Mn(2+) specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties, and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn(2+) over Mn(2+) specificity, the Zn(2+) ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn(2+)-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn(2+)-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn(2+)-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn(2+) specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424328 | PMC |
http://dx.doi.org/10.1074/jbc.M115.645853 | DOI Listing |
Comput Struct Biotechnol J
December 2024
Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Chemistry, UFU, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil.
Synthetic antioxidants are often introduced to biodiesel to increase its oxidative stability, and -butyl hydroquinone (TBHQ) has been selected due to its high efficiency for this purpose. The monitoring of antioxidants in biodiesel therefore provides information on the oxidative stability of biodiesels. Herein, a laser-induced graphene (LIG) electrode is introduced as a new sensor for detecting -butyl hydroquinone (TBHQ) in biodiesel samples.
View Article and Find Full Text PDFRSC Adv
January 2025
Gansu Zhongshang Food Quality Test and Detection Co., Ltd Lanzhou 730010 China.
Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi' an, 710069, PR, China.
Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (HThz), a thiazolothiazole (TTz) derivative with carboxylic acid groups, was synthesized as a ligand for the creation of five MOFs, each associated with distinct metal ions including Ag, Mn, Co, Zn, and Cu. The cathodic electrochemiluminescence (ECL) of HThz and the resulting MOFs was investigated. HThz was found to generate ECL signals, but this process was heavily reliant on potassium persulfate (KSO) as a co-reactant.
View Article and Find Full Text PDFJ Fluoresc
January 2025
College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!