Glaucoma is a chronic progressive optic neuropathy that is characterized by optic nerve changes and visual field loss. Elevated intraocular pressure (IOP) is the main modifiable risk factor. Chronic instillation of daily eyedrops to lower IOP is the primary treatment of choice, although it requires patient adherence and correct performance. We have developed a nanoliposome drug delivery system for the longer term delivery of latanoprost. In the present open-label, pilot study, the safety and efficacy of a single subconjunctival injection of liposomal latanoprost was evaluated in six subjects with a diagnosis of either ocular hypertension (OHT) or primary open-angle glaucoma (POAG). Subconjunctival injection of liposomal latanoprost was well tolerated by all six subjects. From a baseline IOP of 27.55 ± 3.25 mmHg, the mean IOP decreased within 1 h to 14.52 ± 3.31 mmHg (range 10-18 mmHg). This represented a mean decrease of 13.03 ± 2.88 mmHg (range 9-17 mmHg), or 47.43 ± 10.05 % (range 37-63 %). A clinically and statistically significant IOP reduction (≥20 % IOP reduction, P = 0.001 to 0.049) was observed through 3 months after injection. The nanomedicine reported here is the first nanocarrier formulation that has an extended duration of action in humans, beyond a couple of weeks. The findings in this study open up a new treatment modality, which will greatly enhance patient compliance and improve treatment outcomes. The current study provides the evidence and support for further clinical studies of liposomal latanoprost in the treatment of glaucoma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-014-0196-9DOI Listing

Publication Analysis

Top Keywords

liposomal latanoprost
12
subconjunctival injection
8
injection liposomal
8
iop reduction
8
iop
6
latanoprost
5
nanomedicine glaucoma
4
glaucoma sustained
4
sustained release
4
release latanoprost
4

Similar Publications

Disclosing long-term tolerance, efficacy and penetration properties of hyaluronic acid-coated latanoprost-loaded liposomes as chronic glaucoma therapy.

J Control Release

January 2025

Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain; Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; Health Research Institute (Instituto de Investigación Sanitaria) of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain; University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain. Electronic address:

Frequent topical administration of hypotensive eye drops in glaucoma patients may lead to the development of dry eye disease (DED) symptoms, because of tear film destabilization and the adverse effects associated with antiglaucoma formulations. To address all this, in the current study preservative-free latanoprost-loaded (0.005 % w/v) synthetic phosphatidylcholine (1,2-dioleoyl-sn-glycero-3-phosphocholine 0.

View Article and Find Full Text PDF

The first line of glaucoma treatment focuses on reducing intraocular pressure (IOP) through the prescription of topical prostaglandin analogues, such as latanoprost (LAT). Topical ophthalmic medicines have low bioavailability due to their rapid elimination from the ocular surface. Nanotechnology offers innovative ways of enhancing the ocular bioavailability of antiglaucoma agents while reducing administration frequency.

View Article and Find Full Text PDF

The topically administered glaucoma medications usually encounter serious precorneal drug loss and low corneal penetration, leading to a low bioavailability. In addition, due to the complexity of glaucoma etiology, a single medication is often insufficient. In this work, we report a novel dendritic oligoethylenimine decorated liposome for codelivery of two antiglaucoma drugs, latanoprost and timolol.

View Article and Find Full Text PDF

To address the lack of non-cytotoxic, non-surgical options to treat undesirable focal adiposity of the face, we propose use of the anti-glaucoma medication and prostaglandin F2α analogue latanoprost, which has a well-described side effect of periorbital adipose shrinkage. To evaluate the safety and efficacy of soluble and liposomal latanoprost for focal fat reduction. To compare efficacy, single administrations of either the FDA-approved cytolytic drug deoxycholic acid (DOCA), latanoprost, or liposomal latanoprost were injected into ob/ob mouse inguinal fat pads.

View Article and Find Full Text PDF

Contact lens have been proposed as a mean of ocular drug delivery, but the conventional soaking method to load hydrophobic drugs, such as latanoprost shows low drug loading and high burst release with alteration in the critical lens properties. In this paper, a novel latanoprost-loaded PEGylated solid lipid nanoparticles (LP-pSLNs) were developed to increase the latanoprost loading capacity of contact lenses (LP-pSLN-L), while also sustaining ocular drug delivery. The pSLNs were spherical in shape with an average size of 105‒132 nm (nanometer) and a zeta potential ranging from ‒29.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!