Understanding the azeotropic diethyl carbonate-water mixture by structural and energetic characterization of DEC(H2O)(n) heteroclusters.

J Mol Model

Environmental Catalysis Research Group, Chemical Engineering Department, Engineering Faculty, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia.

Published: April 2015

Diethyl carbonate (DEC) is an oxygenated fuel additive. During its synthesis through a promising green process, a DEC-water azeotrope is formed, which decreases DEC production efficiency in the gas phase. Molecular information about this system is scarce but could be of benefit in understanding (and potentially improving) the synthetic process. Therefore, we report a detailed computational study of the conformers of DEC, and their microsolvation with up to four water molecules, with the goal of understanding the observed 1:3 DEC:H2O molar ratio. The most stable DEC conformers (with mutual energy differences < 1.5 kcal mol(-1)) contribute to the energetic and structural properties of the complexes. An exhaustive stochastic exploration of each potential energy surface of DEC-(H2O)n, (where n = 1, 2, 3, 4) heteroclusters discovered 3, 8, 7, and 4 heterodimers, heterotrimers, heterotetramers, and heteropentamers, respectively, at the MP2/6-311++G(d,p) level of theory. DEC conformers and energies of the most stable structures at each heterocluster size were refined using CCSD(T)/6-311++G(d,p). Energy decomposition, electron density topology, and cooperative effects analyses were carried out to determine the relationship between the geometrical features of the heteroclusters and the non-covalent interaction types responsible for their stabilization. Our findings show that electrostatic and exchange energies are responsible for heterocluster stabilization, and also suggest a mutual weakening among hydrogen bonds when more than three water molecules are present. All described results are complementary and suggest a structural and energetic explanation at the molecular level for the experimental molar ratio of 1:3 (DEC:H2O) for the DEC-water azeotrope.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-015-2593-5DOI Listing

Publication Analysis

Top Keywords

structural energetic
8
dec-water azeotrope
8
water molecules
8
molar ratio
8
dec conformers
8
dec
5
understanding azeotropic
4
azeotropic diethyl
4
diethyl carbonate-water
4
carbonate-water mixture
4

Similar Publications

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

DNP (3,4-dinitropyrazole) has attracted much interest due to its promising melting characteristics and high detonation performances, such as low melting point, high density, high detonation velocity, and low sensitivity. In this work, first-principles molecular dynamics (MD) simulations were performed to investigate the anisotropic shock response of DNP in conjunction with the multiscale shock technique (MSST). The initial decomposition mechanism was revealed through the evolution of the chemical reaction and product analysis.

View Article and Find Full Text PDF

Under extreme conditions, condensed matters are subject to undergo a phase transition and there have been many attempts to find another form of hydroxide stabilized over HO. Here, using Density Functional Theory (DFT)-based crystal structure prediction including zero-point energy, it is that proton superoxide (HO), the lightest superoxide, can be stabilized energetically at high pressure and temperature conditions. HO is metallic at high pressure, which originates from the 𝜋 orbitals overlap between adjacent superoxide anions (O ).

View Article and Find Full Text PDF

Key Interaction Changes Determine the Activation Process of Human Parathyroid Hormone Type 1 Receptor.

J Am Chem Soc

January 2025

Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.

The parathyroid hormone type 1 receptor (PTH1R) plays a crucial role in modulating various physiological functions and is considered an effective therapeutic target for osteoporosis. However, a lack of detailed molecular and energetic information about PTH1R limits our comprehensive understanding of its activation process. In this study, we performed computational simulations to explore key events in the activation process, such as conformational changes in PTH1R, Gs protein coupling, and the release of guanosine diphosphate (GDP).

View Article and Find Full Text PDF

Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!