Serum levels of monocyte chemoattractant protein-1 and all-cause and cardiovascular mortality among patients with coronary artery disease.

PLoS One

Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.

Published: February 2016

Background: Monocyte chemoattractant protein-1 (MCP-1) is an important chemokine at multiple phases of atherosclerosis in animals, but human studies are few and inconsistent. The aim of this study is to investigate the association of serum MCP-1 with all-cause and cardiovascular disease (CVD) mortality among coronary artery disease (CAD) patients and determine whether this biomarker can add secondary prognostic value to standard risk predictors.

Methods: MCP-1 was measured at baseline in 1411 CAD patients who were 40-85 years of age. Cox proportional hazards regression models were used to estimate the association of MCP-1 levels with death risk.

Results: During a median follow-up of 3.3 years, 117 deaths were recorded, 88 of which were due to CVD. The multivariable-adjusted hazard ratios across tertiles of MCP-1 were 1.51 (95% confidence intervals [CI] 0.89-2.58), 1.00, and 2.11 (95% CI 1.31-3.40) for all-cause mortality, and 1.50 (95% CI 0.80-2.81), 1.00, and 2.21 (95% CI 1.27-3.87) for CVD mortality. The addition of serum MCP-1 to the fully adjusted model increased the C-index by 0.009 (p<0.0001) for all-cause mortality and 0.008 (p<0.0001) for CVD mortality and significantly improved the predictive ability by 12.1% (P = 0.006) on all-cause mortality and 12.6% (P = 0.003) on CVD mortality using the net reclassification improvement method.

Conclusions: Both lower and higher MCP-1 levels are associated with an increased risk of all-cause and CVD mortality among CAD patients. More research is needed to confirm its clinical relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365005PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120633PLOS

Publication Analysis

Top Keywords

monocyte chemoattractant
8
chemoattractant protein-1
8
all-cause cardiovascular
8
coronary artery
8
artery disease
8
serum mcp-1
8
cvd mortality
8
cad patients
8
mcp-1
6
serum levels
4

Similar Publications

Oral administration of Folium Artemisiae Argyi-derived exosome-like nanovesicles can improve ulcerative colitis by regulating intestinal microorganisms.

Phytomedicine

January 2025

General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China. Electronic address:

Background: Ulcerative colitis (UC), an inflammatory disease characterized by intestinal barrier dysfunction, poses significant challenges because of the toxicity and adverse effects commonly associated with conventional therapies. Safer and more efficacious treatment strategies are needed.

Purpose: The purpose of this study was to treat UC with Folium Artemisiae Argyi exosome-like nanovesicles (FAELNs) and to explore its related mechanism to provide a safer and more effective means for the treatment of ulcerative colitis.

View Article and Find Full Text PDF

SOX11 Silence Inhibits Atherosclerosis Progression in ApoE-Deficient Mice by Alleviating Endothelial Dysfunction.

Exp Cell Res

January 2025

Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China. Electronic address:

SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.

View Article and Find Full Text PDF

Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice.

View Article and Find Full Text PDF

Systemic sclerosis (SSc) is a complex autoimmune disease with an unclear etiology and no effective treatments. Recent research has suggested involvement of the microbiome in SSc pathogenesis. This study aimed to identify specific microbial species associated with SSc and explore their therapeutic potential.

View Article and Find Full Text PDF

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!