This work deals with the three-dimensional flow of nanofluid over a bi-directional exponentially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nanoparticles are considered in the mathematical model. The temperature and nanoparticle volume fraction at the sheet are also distributed exponentially. Local similarity solutions are obtained by an implicit finite difference scheme known as Keller-box method. The results are compared with the existing studies in some limiting cases and found in good agreement. The results reveal the existence of interesting Sparrow-Gregg-type hills for temperature distribution corresponding to some range of parametric values.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364987 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116603 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!