Antimicrobial resistance of pathogenic bacteria, including Salmonella spp., is an emerging problem of food safety. Antimicrobial use can result in selection of resistant organisms. The food chain is considered a route of transmission of resistant pathogens to humans. In many European countries, sulfonamides are one of the most commonly used antimicrobials. The aim of our investigation was to assess the prevalence of sul genes and plasmid occurrence among sulfonamide-resistant Salmonella spp. Eighty-four sulfonamide-resistant isolates were collected in 2008 and 2013 from retail products in Poland. Minimal inhibitory concentration of all of these isolates was ≥1024 μg/mL. Resistant isolates were tested for the presence of sul1, sul2, sul3, and int1 genes by using multiplex polymerase chain reaction. In total, 44.0% (37/84) isolates carried the sul1 gene, 46.4% (39/84) were sul2 positive, while the sul3 gene was not detected in any of the sulfonamide-resistant isolates tested. It was found that 3.6% (3/84) of resistant Salmonella spp. contained sul1, sul2, and intI genes. All 33 intI-positive isolates carried the sul1 gene. Eleven of the sulfonamide-resistant isolates were negative for all the sul genes. Most of the sulfonamide-resistant Salmonella spp. harbored plasmids; only in eight isolates were no plasmids detected. Generally, the size of the plasmids ranged from approximately 2 kb to ≥90 kb. Our results revealed a relatively a high prevalence of sulfonamides-resistant Salmonella spp. isolated from retail food. Additionally, we have detected a high dissemination of plasmids and class 1 integrons that may enhance the spread of resistance genes in the food chain.

Download full-text PDF

Source
http://dx.doi.org/10.1089/fpd.2014.1825DOI Listing

Publication Analysis

Top Keywords

salmonella spp
24
sul genes
12
sulfonamide-resistant isolates
12
spp isolated
8
food chain
8
sulfonamide-resistant salmonella
8
isolates
8
isolates tested
8
sul1 sul2
8
isolates carried
8

Similar Publications

Marine mucilage disasters, primarily caused by global warming and marine pollution, threaten food security and the sustainability of marine food resources. This study assessed the microbial risks to public health in common sole, deep-water rose shrimp, European anchovy, Atlantic horse mackerel and Mediterranean mussel following the mucilage disaster in the Sea of Marmara in 2021. The total viable count, total Enterobacteriaceae count and the presence of Escherichia coli O157:H7, Salmonella spp.

View Article and Find Full Text PDF

The WHO has compiled a list of pathogens that urgently require new antibiotics in response to the rising reports of antibiotic resistance and a diminished supply of new antibiotics. At the top of this list is fluoroquinolone-resistant , fluoroquinolone-resistant spp. and vancomycin-resistant .

View Article and Find Full Text PDF

It was previously reported that utilization of tetrathionate and 1,2-propanediol by spp. through the metabolic pathways encoded by and operons are related to overgrowth and out-competing microbiota in an anaerobic environment. However, recent knowledge demonstrated which strains in the absence of and genes provoke both higher intestinal colonization and spreading bacteria on faeces in relation to their respective wild-type strain, and generate more prominent inflammation as well.

View Article and Find Full Text PDF

In recent years, infection is a major global public health concern, particularly in food safety. This study analyzed the genomes of 102 strains isolated between 2016 and 2023 from food, foodborne disease patients, and food poisoning incidents, focusing on their molecular characteristics, antibiotic resistance genes (ARGs), and virulence genes. serovar Enteritidis (37.

View Article and Find Full Text PDF

, non-typhoidal spp., and enteropathogenic/enterohemorrhagic (EPEC/EHEC) are leading causes of food-borne illness worldwide. has been used to model EPEC and EHEC infection in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!